Suppr超能文献

不变流形中具有瞬态混沌的动力系统的钟乳石盆地结构

Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold.

作者信息

Dronov Vasily, Ott Edward

机构信息

Institute for Plasma Research, University of Maryland, College Park, Maryland 20742.

出版信息

Chaos. 2000 Jun;10(2):291-298. doi: 10.1063/1.166495.

Abstract

Dynamical systems with invariant manifolds occur in a variety of situations (e.g., identical coupled oscillators, and systems with a symmetry). We consider the case where there is both a nonchaotic attractor (e.g., a periodic orbit) and a nonattracting chaotic set (or chaotic repeller) in the invariant manifold. We consider the character of the basins for the attracting nonchaotic set in the invariant manifold and another attractor not in the invariant manifold. It is found that the boundary separating these basins has an interesting structure: The basin of the attractor not in the invariant manifold is characterized by thin cusp shaped regions ("stalactites") extending down to touch the nonattracting chaotic set in the invariant manifold. We also develop theoretical scalings applicable to these systems, and compare with numerical experiments. (c) 2000 American Institute of Physics.

摘要

具有不变流形的动力系统出现在各种情形中(例如,相同耦合振子以及具有对称性的系统)。我们考虑这样一种情况,即在不变流形中既存在一个非混沌吸引子(例如,一个周期轨道)又存在一个非吸引混沌集(或混沌排斥子)。我们研究不变流形中吸引性非混沌集以及不在不变流形中的另一个吸引子的盆地特征。结果发现,分隔这些盆地的边界具有一种有趣的结构:不在不变流形中的吸引子的盆地的特征是有细尖状区域(“钟乳石”)向下延伸,直至与不变流形中的非吸引混沌集接触。我们还推导了适用于这些系统的理论标度,并与数值实验进行比较。(c)2000美国物理研究所。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验