Fransen P, Hendrickx J, Brutsaert D L, Sys S U
Department of Physiology and Medicine, University of Antwerp (RUCA), Groenenborgerlaan, 171, B-2020, Antwerp, Belgium.
Cardiovasc Res. 2001 Dec;52(3):487-99. doi: 10.1016/s0008-6363(01)00412-6.
In mammalian cardiomyocytes, alpha isoforms of Na(+)/K(+) ATPase have specific localisation and function, but their role in endocardial endothelium is unknown.
Different alpha isoforms in endocardial endothelium and cardiomyocytes of rabbit were investigated by measuring contractile parameters of papillary muscles, by RT-PCR, by Western blots and by immunocytochemistry.
Inhibition of Na(+)/K(+) ATPase by decreasing external K(+) from 5.0 to 0.5 mmol/l caused biphasic inotropic effects. The maximal negative inotropic effect at external K(+) of 2.5 mmol/l was significantly larger in +EE muscles (with intact endocardial endothelium) than in -EE muscles (with endocardial endothelium removed) (-22.5+/-2.4% versus -5.9+/-4.0%, n=7, P<0.05). Further decrease of K(+) to 0.5 mmol/l caused endothelium-independent positive inotropy (27.8+/-11.8% for +EE versus 18.6+/-11.3% for -EE, n=7, P>0.05). Inhibition of Na(+)/K(+) ATPase either by dihydro-ouabain (10(-9) to 10(-4) mol/l, n=4) or by K(+) decrease following inhibition of Na(+)-H(+) exchanger by dimethyl-amiloride (50 micromol/l, n=6) caused endothelium-independent positive inotropic effects only. RT-PCR and Western Blot demonstrated alpha(1) and alpha(2) Na-K-ATPase isoforms in cardiomyocytes, but only alpha(1) in cultured endocardial endothelial cells. Immunohistochemistry showed that alpha(1) in endocardial endothelium was predominantly present at the luminal side of the cell (n=7) and that alpha(1) and alpha(2) displayed different localisation in cardiomyocytes.
These results suggested that negative and positive inotropic effects of Na(+)/K(+) ATPase inhibition in +EE muscles could be attributed to inhibition of endocardial endothelial alpha(1) and muscle alpha(2) isoform, respectively. Accordingly, the endocardial endothelial alpha(1) isoform of Na(+)/K(+) ATPase may contribute to blood-heart barrier properties of this endothelium and may control cardiac performance via endothelial Na(+)/H(+) exchange.
在哺乳动物心肌细胞中,钠钾ATP酶的α亚型具有特定的定位和功能,但其在心内膜内皮细胞中的作用尚不清楚。
通过测量乳头肌的收缩参数、逆转录聚合酶链反应(RT-PCR)、蛋白质免疫印迹法和免疫细胞化学法,研究兔心内膜内皮细胞和心肌细胞中不同的α亚型。
将细胞外钾离子浓度从5.0 mmol/L降至0.5 mmol/L对钠钾ATP酶的抑制作用产生了双相性变力效应。细胞外钾离子浓度为2.5 mmol/L时,最大负性变力效应在+EE肌肉(心内膜内皮完整)中显著大于-EE肌肉(心内膜内皮已去除)(-22.5±2.4%对-5.9±4.0%,n = 7,P<0.05)。钾离子进一步降至0.5 mmol/L时产生了不依赖于内皮的正性变力作用(+EE为27.8±11.8%,-EE为18.6±11.3%,n = 7,P>0.05)。用二氢哇巴因(10⁻⁹至10⁻⁴mol/L,n = 4)或在用二甲基氨氯吡脒(50 μmol/L,n = 6)抑制钠氢交换体后降低钾离子浓度来抑制钠钾ATP酶,仅产生不依赖于内皮的正性变力作用。RT-PCR和蛋白质免疫印迹法显示心肌细胞中有α₁和α₂钠钾ATP酶亚型,但培养的心内膜内皮细胞中只有α₁。免疫组织化学显示心内膜内皮中的α₁主要存在于细胞的腔面(n = 7),并且α₁和α₂在心肌细胞中表现出不同的定位。
这些结果表明,+EE肌肉中抑制钠钾ATP酶产生负性和正性变力效应可能分别归因于心内膜内皮α₁亚型和心肌α₂亚型的抑制。因此,钠钾ATP酶的心内膜内皮α₁亚型可能有助于该内皮的血-心屏障特性,并可能通过内皮钠氢交换来控制心脏功能。