Marchetti B, Morale M C, Testa N, Tirolo C, Caniglia S, Amor S, Dijkstra C D, Barden N
Department of Pharmacology, Medical School, University of Sassari 07100, Sassari, Italy.
Brain Res Brain Res Rev. 2001 Nov;37(1-3):259-72. doi: 10.1016/s0165-0173(01)00130-8.
Current research evidence suggests that interactions between genetic and environmental factors contribute to modulate the susceptibility to degenerative disorders, including inflammatory and autoimmune diseases of the central nervous system (CNS). In this context, bidirectional communication between the neuroendocrine and immune systems during ontogeny plays a pivotal role in programming the development of neuroendocrine and immune responses in adult life, thereby influencing the predisposition to several disease entities. Glucocorticoids (GCs), the end products of the hypothalamic-pituitary-adrenocortical (HPA) axis, gender and signals generated by hypothalamic-pituitary-gonadal (HPG) axis are major players coordinating the development of immune system function and exerting powerful effects in the susceptibility to autoimmune disorders, including experimental autoimmune encephalomyelitis (EAE), the experimental model for multiple sclerosis (MS). In particular, GCs exert their beneficial immunosuppressive and anti-inflammatory effects in inflammatory disorders of the CNS, after binding to their cytoplasmic receptors (GRs). Here we review our work using transgenic (Tg) mice with a dysfunctional GR from early embryonic life on programming vulnerability to EAE. The GR-deficiency of these Tg mice confers resistance to active EAE induction. The interplay between GCs, proinflammatory mediators, gender and EAE is summarized. On the basis of our data, it does appear that exposure to a defective GR through development programs major changes in endogenous neuroendocrine and immune mechanisms controlling the vulnerability to EAE. These studies highlight the plasticity of the HPA-immune axis and its pharmacological manipulation in autoimmune diseases of the CNS.
目前的研究证据表明,遗传因素与环境因素之间的相互作用有助于调节对退行性疾病的易感性,包括中枢神经系统(CNS)的炎症性和自身免疫性疾病。在这种情况下,个体发育过程中神经内分泌系统与免疫系统之间的双向通讯在规划成年期神经内分泌和免疫反应的发展中起着关键作用,从而影响对多种疾病实体的易感性。糖皮质激素(GCs)是下丘脑-垂体-肾上腺皮质(HPA)轴的终产物,性别以及下丘脑-垂体-性腺(HPG)轴产生的信号是协调免疫系统功能发育并对自身免疫性疾病(包括实验性自身免疫性脑脊髓炎(EAE),多发性硬化症(MS)的实验模型)的易感性产生强大影响的主要因素。特别是,GCs在与它们的细胞质受体(GRs)结合后,在CNS的炎症性疾病中发挥有益的免疫抑制和抗炎作用。在这里,我们回顾了我们使用从胚胎早期就具有功能失调的GR的转基因(Tg)小鼠对EAE易感性进行编程的工作。这些Tg小鼠的GR缺陷使其对主动诱导的EAE具有抗性。总结了GCs、促炎介质、性别和EAE之间的相互作用。根据我们的数据,在发育过程中暴露于有缺陷的GR似乎确实会使控制EAE易感性的内源性神经内分泌和免疫机制发生重大变化。这些研究突出了HPA-免疫轴的可塑性及其在CNS自身免疫性疾病中的药理调控作用。