Suppr超能文献

模拟肺部和中枢神经系统的氧气毒性以及人体参数估计

Modeling pulmonary and CNS O(2) toxicity and estimation of parameters for humans.

作者信息

Arieli R, Yalov A, Goldenshluger A

机构信息

Israel Naval Medical Institute, Israel.

出版信息

J Appl Physiol (1985). 2002 Jan;92(1):248-56. doi: 10.1152/japplphysiol.00434.2001.

Abstract

The power expression for cumulative oxygen toxicity and the exponential recovery were successfully applied to various features of oxygen toxicity. From the basic equation, we derived expressions for a protocol in which PO(2) changes with time. The parameters of the power equation were solved by using nonlinear regression for the reduction in vital capacity (DeltaVC) in humans: %DeltaVC = 0.0082 x t(2)(PO(2)/101.3)(4.57), where t is the time in hours and PO(2) is expressed in kPa. The recovery of lung volume is DeltaVC(t) = DeltaVC(e) x e(-(-0.42 + 0.00379PO(2))t), where DeltaVC(t) is the value at time t of the recovery, DeltaVC(e) is the value at the end of the hyperoxic exposure, and PO(2) is the prerecovery oxygen pressure. Data from different experiments on central nervous system (CNS) oxygen toxicity in humans in the hyperbaric chamber (n = 661) were analyzed along with data from actual closed-circuit oxygen diving (n = 2,039) by using a maximum likelihood method. The parameters of the model were solved for the combined data, yielding the power equation for active diving: K = t(2) (PO(2)/101.3)(6.8), where t is in minutes. It is suggested that the risk of CNS oxygen toxicity in diving can be derived from the calculated parameter of the normal distribution: Z = [ln(t) - 9.63 +3.38 x ln(PO(2)/101.3)]/2.02. The recovery time constant for CNS oxygen toxicity was calculated from the value obtained for the rat, taking into account the effect of body mass, and yielded the recovery equation: K(t) = K(e) x e(-0.079t), where K(t) and K(e) are the values of K at time t of the recovery process and at the end of the hyperbaric oxygen exposure, respectively, and t is in minutes.

摘要

累积氧中毒和指数恢复的功率表达式已成功应用于氧中毒的各种特征。从基本方程出发,我们推导出了PO₂随时间变化的方案的表达式。通过对人体肺活量降低(ΔVC)进行非线性回归求解了功率方程的参数:%ΔVC = 0.0082×t²(PO₂/101.3)⁴·⁵⁷,其中t为时间(小时),PO₂以kPa表示。肺容积的恢复为ΔVC(t) = ΔVC(e)×e^(-(-0.42 + 0.00379PO₂)t),其中ΔVC(t)是恢复过程中时间t时的值,ΔVC(e)是高氧暴露结束时的值,PO₂是恢复前的氧分压。利用最大似然法分析了高压舱内人体中枢神经系统(CNS)氧中毒不同实验的数据(n = 661)以及实际闭路氧气潜水的数据(n = 2039)。针对合并后的数据求解了模型参数,得出主动潜水的功率方程:K = t²(PO₂/101.3)⁶·⁸,其中t以分钟为单位。研究表明,潜水时中枢神经系统氧中毒的风险可从正态分布的计算参数得出:Z = [ln(t) - 9.63 + 3.38×ln(PO₂/101.3)]/2.02。考虑到体重的影响,根据大鼠实验所得值计算出中枢神经系统氧中毒的恢复时间常数,并得出恢复方程:K(t) = K(e)×e^(-0.079t),其中K(t)和K(e)分别是恢复过程中时间t时和高压氧暴露结束时K的值,t以分钟为单位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验