Kim J E, Han B S, Choi W S, Eom D S, Lee E H, Oh T H, Markelonis G J, Saido T C, Lee G E, Chung I K, Oh Y J
Department of Biology, Yonsei University College of Science, 134 Shinchondong Seodaemoonku, Seoul 120-749, Korea.
J Neurosci Res. 2001 Dec 15;66(6):1074-82. doi: 10.1002/jnr.10028.
Etoposide-induced death comprises such nuclear events as the formation of topoisomerase II-DNA cleavable complex and cytosolic events including caspase activation. By first establishing the temporospatial death sequence triggered by etoposide in a neuronal cell line, MN9D overexpressing Bcl-X(L) (MN9D/Bcl-X(L)) or control vector (MN9D/Neo), we examined whether formation of this complex is primarily responsible for cell death and at which strategic points and how Bcl-X(L) blocks etoposide-induced neuronal death. Etoposide induced death that was dependent on caspase, cycloheximide, and calpain in MN9D/Neo cells. Etoposide also induced death in enucleated MN9D/Neo cells, although this was less severe. The level of topoisomerase II-DNA cleavable complex reached at a maximum of 2 hr after etoposide treatment was identical in MN9D/Neo and MN9D/Bcl-X(L) cells. In MN9D/Neo cells, cytochrome c release into the cytosol and caspase activation occurred as early as 2 hr and 3-6 hr after etoposide treatment, respectively. Etoposide-induced DNA laddering potentially via caspase appeared as early as 12 hr after drug treatment, followed by nuclear swelling in MN9D/Neo cells (>18-20 hr). Subsequently, nuclear condensation started by 24-28 hr and became apparent thereafter. All of these events except for nuclear swelling were substantially blocked in MN9D/Bcl-X(L). At the later stage of cell death (<32-36 hr), a specific cleavage of Bax and fodrin appeared that was completely blocked by calpain inhibitor or by Bcl-X(L). Taken together, our data suggest that Bcl-X(L) prevents etoposide-induced neuronal death by exerting its anticaspase and anticalpain effect on cellular events after the formation of topoisomerase II-DNA cleavable complex that may not be a major contributor to cell death.
依托泊苷诱导的细胞死亡包括拓扑异构酶 II-DNA 可切割复合物形成等核事件以及包括半胱天冬酶激活在内的胞质事件。通过首先在过表达 Bcl-X(L) 的神经元细胞系 MN9D(MN9D/Bcl-X(L))或对照载体(MN9D/Neo)中确定依托泊苷触发的时空死亡序列,我们研究了这种复合物的形成是否是细胞死亡的主要原因,以及 Bcl-X(L) 在哪些关键节点以及如何阻断依托泊苷诱导的神经元死亡。依托泊苷在 MN9D/Neo 细胞中诱导的细胞死亡依赖于半胱天冬酶、放线菌酮和钙蛋白酶。依托泊苷也能诱导去核的 MN9D/Neo 细胞死亡,尽管程度较轻。拓扑异构酶 II-DNA 可切割复合物的水平在依托泊苷处理后 2 小时达到最大值,在 MN9D/Neo 和 MN9D/Bcl-X(L) 细胞中是相同的。在 MN9D/Neo 细胞中,细胞色素 c 释放到胞质溶胶中以及半胱天冬酶激活分别在依托泊苷处理后 2 小时和 3 - 6 小时最早出现。依托泊苷诱导的可能通过半胱天冬酶介导的 DNA 梯状条带最早在药物处理后 12 小时出现,随后 MN9D/Neo 细胞出现核肿胀(>18 - 20 小时)。随后,核浓缩在 24 - 28 小时开始并在此后变得明显。除核肿胀外,所有这些事件在 MN9D/Bcl-X(L) 中均被显著阻断。在细胞死亡后期(<32 - 36 小时),Bax 和血影蛋白出现特异性切割,钙蛋白酶抑制剂或 Bcl-X(L) 可完全阻断这种切割。综上所述,我们的数据表明,Bcl-X(L) 通过对拓扑异构酶 II-DNA 可切割复合物形成后细胞事件发挥抗半胱天冬酶和抗钙蛋白酶作用来预防依托泊苷诱导的神经元死亡,而拓扑异构酶 II-DNA 可切割复合物可能不是细胞死亡的主要促成因素。