Suppr超能文献

Correction of radioresistant DNA synthesis in ataxia telangiectasia fibroblasts by prostaglandin E2 treatment.

作者信息

Mirzayans R, Paterson M C

机构信息

Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada.

出版信息

Environ Mol Mutagen. 2001;38(2-3):191-9. doi: 10.1002/em.1071.

Abstract

Cultured cells from patients inheriting the rare cancer-prone and radiotherapy-sensitive disorder ataxia telangiectasia (AT) exhibit defects in the activation of cell-cycle checkpoints after exposure to ionizing radiation. In particular, the failure of AT cells to arrest transiently the DNA de novo replication machinery immediately after irradiation--so-called radioresistant DNA synthesis (RDS)--is often taken as a molecular hallmark of the disease. Recently we reported that: (i) the radiation-responsive S-phase checkpoint operating in normal human cells is mediated by a signal transduction pathway involving Ca2+/calmodulin-dependent protein kinase II (CaMKII); and (ii) the RDS phenotype of AT cells is associated with failure to mobilize Ca2+ from intracellular stores, which is required for activation of the CaMKII-dependent S-phase arrest. In the present study, we demonstrate that the RDS phenotype of AT dermal fibroblasts can be rectified in the absence of ectopic expression of functional ATM, the 350-kDa protein kinase encoded by the gene mutated in AT. Correction of RDS was observed when AT fibroblasts were coincubated with normal fibroblasts under conditions in which the 2 different cell cultures shared the same medium but were completely separated physically. The RDS trait was also rectified when AT fibroblasts were briefly incubated with prostaglandin E2 in the absence of normal feeder cells, signifying that this ubiquitous eicosanoid can serve as the diffusible "RDS-correction factor" for AT cells in the aforementioned cocultivation studies. It would therefore appear that prostaglandin E2 can assume the role of an extracellular signaling modulator of the S-phase checkpoint in AT cells exposed to ionizing radiation, inducing DNA synthesis shutdown via an alternative, ATM-independent signal transduction pathway.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验