Suppr超能文献

通过正交回归估计药代动力学参数:四种算法的比较

Estimation of pharmacokinetic parameters by orthogonal regression: comparison of four algorithms.

作者信息

Tod Michel, Aouimer Azzedine, Petitjean Olivier

机构信息

Departement de Pharmacotoxicologie, Hôpital Avicenne, 125 Route de Stalingrad, 93009 Cedex, Bobigny, France.

出版信息

Comput Methods Programs Biomed. 2002 Jan;67(1):13-26. doi: 10.1016/s0169-2607(00)00148-6.

Abstract

The contribution of non-linear orthogonal regression for estimation of individual pharmacokinetic parameters when drug concentrations and sampling times are subject to error was studied. The first objective was to introduce and compare four numerical approaches that involve different degrees of approximation for parameter estimation by orthogonal regression. The second objective was to compare orthogonal with non-orthogonal regression. These evaluations were based on simulated data sets from 300 'subjects', thereby enabling precision and accuracy of parameter estimates to be determined. The pharmacokinetic model was a one-compartment open model with first-order absorption and elimination rates. The inter-individual coefficients of variation (CV) of the pharmacokinetic parameters were in the range 33-100%. Eight measurement-error models for times and concentrations (homo- or heteroscedastic with constant CV) were considered. Accuracy of the four algorithms was very close in almost all instances (typical bias, 1-4%). Precision showed three expected trends: root mean squared error (RMSE) increased when the residual error was larger or the number of observations was smaller, and it was highest for the absorption rate constant and common error variance. Overall, RMSE ranged from 5 to 40%. It was found that the simplest algorithm for othogonal regression performed as well as the more complicated approaches. Errors in sampling time resulted in an increased bias and imprecision in individual parameter estimates (especially for k(a) in our example) and in common error variance when the estimation method did not take into account these errors. In this situation, use of orthogonal regression resulted in smaller bias and better precision.

摘要

当药物浓度和采样时间存在误差时,研究了非线性正交回归在个体药代动力学参数估计中的作用。第一个目标是介绍和比较四种数值方法,这些方法在通过正交回归进行参数估计时涉及不同程度的近似。第二个目标是比较正交回归和非正交回归。这些评估基于来自300名“受试者”的模拟数据集,从而能够确定参数估计的精度和准确性。药代动力学模型是具有一级吸收和消除速率的单室开放模型。药代动力学参数的个体间变异系数(CV)在33%至100%范围内。考虑了时间和浓度的八种测量误差模型(同方差或异方差,CV恒定)。在几乎所有情况下,四种算法的准确性都非常接近(典型偏差为1%至4%)。精度呈现出三个预期趋势:当残差误差较大或观测次数较少时,均方根误差(RMSE)增加,并且对于吸收速率常数和共同误差方差而言最高。总体而言,RMSE范围为5%至40%。发现最简单的正交回归算法与更复杂的方法表现相当。当估计方法未考虑采样时间误差时,采样时间误差会导致个体参数估计(在我们的示例中尤其是k(a))以及共同误差方差的偏差增加和精度降低。在这种情况下,使用正交回归会导致较小的偏差和更好的精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验