Suppr超能文献

在群体药代动力学混合效应模型中,研究残留未解释变异成分对参数估计偏差和不精密度的影响。

Investigating the contribution of residual unexplained variability components on bias and imprecision of parameter estimates in population pharmacokinetic mixed-effects modeling.

作者信息

Jaber Mutaz M, Brundage Richard C

机构信息

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.

Clinical pharmacology and Pharmacometrics, Gilead Sciences, Inc., Foster City, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2023 Apr;50(2):123-132. doi: 10.1007/s10928-022-09837-5. Epub 2023 Jan 8.

Abstract

In a nonlinear mixed-effects modeling (NLMEM) approach of pharmacokinetic (PK) and pharmacodynamic (PD) data, two levels of random effects are generally modeled: between-subject variability (BSV) and residual unexplained variability (RUV). The goal of this simulation-estimation study was to investigate the extent to which PK and RUV model misspecification, errors in recording dosing and sampling times, and variability in drug content uniformity contribute to the estimated magnitude of RUV and PK parameter bias. A two-compartment model with first-order absorption and linear elimination was simulated as a true model. PK parameters were clearance 5.0 L/h; central volume of distribution 35 L; inter-compartmental clearance 50 L/h; peripheral volume of distribution 50 L. All parameters were assumed to have a 30% coefficient of variation (CV). One hundred in-silico subjects were administered a labeled dose of 120 mg under 4 sample collection designs. PK and RUV model misspecifications were associated with relatively larger increases in the magnitude of RUV compared to other sources for all levels of sampling design. The contribution of dose and dosing time misspecifications have negligible effects on RUV but result in higher bias in PK parameter estimates. Inaccurate sampling time data results in biased RUV and increases with the magnitude of perturbations. Combined perturbation scenarios in the studied sources will propagate the variability and accumulate in RUV magnitude and bias in PK parameter estimates. This work provides insight into the potential contributions of many factors that comprise RUV and bias in PK parameters.

摘要

在药代动力学(PK)和药效学(PD)数据的非线性混合效应建模(NLMEM)方法中,通常对两个层次的随机效应进行建模:个体间变异性(BSV)和残余未解释变异性(RUV)。本模拟估计研究的目的是调查PK和RUV模型设定错误、给药和采样时间记录误差以及药物含量均匀性变异对RUV估计值大小和PK参数偏差的影响程度。将具有一级吸收和线性消除的二室模型模拟为真实模型。PK参数为清除率5.0 L/h;中央分布容积35 L;室间清除率50 L/h;外周分布容积50 L。假定所有参数的变异系数(CV)为30%。在4种样本采集设计下,给100名虚拟受试者给予120 mg的标记剂量。对于所有水平的采样设计,与其他来源相比,PK和RUV模型设定错误与RUV大小的相对较大增加相关。剂量和给药时间设定错误对RUV的影响可忽略不计,但会导致PK参数估计值出现更高的偏差。不准确的采样时间数据会导致RUV出现偏差,并随着扰动幅度的增加而增加。所研究来源中的组合扰动情况将使变异性传播,并在RUV大小和PK参数估计偏差中累积。这项工作深入了解了构成RUV和PK参数偏差的许多因素的潜在影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验