Suppr超能文献

氟西汀在人肝微粒体中的 O-去烷基化与 CYP2C19 基因剂量及 CYP3A4 的参与关系

O-Dealkylation of fluoxetine in relation to CYP2C19 gene dose and involvement of CYP3A4 in human liver microsomes.

作者信息

Liu Zhao-Qian, Zhu Bing, Tan Yun-Fu, Tan Zhi-Rong, Wang Lian-Sheng, Huang Song-Lin, Shu Yan, Zhou Hong-Hao

机构信息

Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.

出版信息

J Pharmacol Exp Ther. 2002 Jan;300(1):105-11. doi: 10.1124/jpet.300.1.105.

Abstract

This work evaluated the kinetic behavior of fluoxetine O-dealkylation in human liver microsomes from different CYP2C19 genotypes and identified the isoenzymes of cytochrome P450 involved in this metabolic pathway. The kinetics of the rho-trifluoromethylphenol (TFMP) formation from fluoxetine was determined in human liver microsomes from three homozygous (wt/wt) and three heterozygous (wt/m1) extensive metabolizers (EMs) and three poor metabolizers (PMs) with m1 mutation (m1/m1) with respect to CYP2C19. The formation rate of TFMP was determined by gas chromatograph with electron-capture detection. The kinetics of TFMP formation was best described by the two-enzyme and single-enzyme Michaelis-Menten equation for liver microsomes from CYP2C19 EMs and PMs, respectively. The mean intrinsic clearance (V(max)/K(m)) for the high- and low-affinity component was 25.2 microl/min/nmol and 3.8 microl/min/nmol of cytochrome P450 in the homozygous EMs microsomes and 12.8 microl/min/nmol and 2.9 microl/min/nmol of cytochrome P450 in the heterozygous EMs microsomes, respectively. Omeprazole (a CYP2C19 substrate) at a high concentration and triacetyloleandomycin (a selective inhibitor of CYP3A4) substantially inhibited O-dealkylation of fluoxetine. Furthermore, fluoxetine O-dealkylation was correlated significantly with S-mephenytoin 4'-hydroxylation at a low substrate concentration and midazolam 1'-hydroxylation at a high substrate concentration in liver microsomes of 11 Chinese individuals, respectively. Moreover, there were obvious differences in the O-dealkylation of fluoxetine in liver microsomes from different CYP2C19 genotypes and in microsomal fractions of different human-expressed lymphoblast P450s. The results demonstrated that polymorphic CYP2C19 and CYP3A4 enzymes were the major cytochrome P450 isoforms responsible for fluoxetine O-dealkylation, whereas CYP2C19 catalyzed the high-affinity O-dealkylation of fluoxetine, and its contribution to this metabolic reaction was gene dose-dependent.

摘要

本研究评估了不同CYP2C19基因型的人肝微粒体中氟西汀O-脱烷基化的动力学行为,并确定了参与该代谢途径的细胞色素P450同工酶。在来自三名纯合(野生型/野生型)和三名杂合(野生型/m1)的广泛代谢者(EMs)以及三名携带m1突变(m1/m1)的CYP2C19慢代谢者(PMs)的人肝微粒体中,测定了氟西汀生成rho-三氟甲基苯酚(TFMP)的动力学。TFMP的生成速率通过带有电子捕获检测的气相色谱法测定。对于CYP2C19 EMs和PMs的肝微粒体,TFMP生成的动力学分别用双酶和单酶米氏方程来最佳描述。在纯合EMs微粒体中,高亲和力和低亲和力组分的平均内在清除率(V(max)/K(m))分别为25.2微升/分钟/纳摩尔和3.8微升/分钟/纳摩尔细胞色素P450,在杂合EMs微粒体中分别为12.8微升/分钟/纳摩尔和2.9微升/分钟/纳摩尔细胞色素P450。高浓度的奥美拉唑(一种CYP2C19底物)和三乙酰夹竹桃霉素(一种CYP3A4选择性抑制剂)显著抑制了氟西汀的O-脱烷基化。此外,在11名中国个体的肝微粒体中,氟西汀的O-脱烷基化分别与低底物浓度下的S-美芬妥因4'-羟基化和高底物浓度下的咪达唑仑1'-羟基化显著相关。而且,不同CYP2C19基因型的肝微粒体以及不同人表达的淋巴母细胞P450的微粒体组分中,氟西汀的O-脱烷基化存在明显差异。结果表明,多态性的CYP2C19和CYP3A4酶是负责氟西汀O-脱烷基化的主要细胞色素P450同工酶,而CYP2C19催化氟西汀的高亲和力O-脱烷基化,其对该代谢反应的贡献呈基因剂量依赖性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验