Meunier Frédéric A, Schiavo Giampietro, Molgó Jordi
Molecular NeuroPathobiology Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
J Physiol Paris. 2002 Jan-Mar;96(1-2):105-13. doi: 10.1016/s0928-4257(01)00086-9.
The neuromuscular junction is one of the most accessible mammalian synapses which offers a useful model to study long-term synaptic modifications occurring throughout life. It is also the natural target of botulinum neurotoxins (BoNTs) causing a selective blockade of the regulated exocytosis of acetylcholine thereby triggering a profound albeit transitory muscular paralysis. The scope of this review is to describe the principal steps implicated in botulinum toxin intoxication from the early events leading to a paralysis to the cellular response implementing an impressive synaptic remodelling culminating in the functional recovery of neuromuscular transmission. BoNT/A treatment promotes extensive sprouting emanating from intoxicated motor nerve terminals and the distal portion of motor axons. The current view is that sprouts have the ability to form functional synapses as they display a number of key proteins required for exocytosis: SNAP-25, VAMP/synaptobrevin, syntaxin-I, synaptotagmin-II, synaptophysin, and voltage-activated Na+, Ca2+ and Ca2+-activated K+ channels. Exo-endocytosis was demonstrated (using the styryl dye FM1-43) to occur only in the sprouts in vivo, at the time of functional recovery emphasising the direct role of nerve terminal outgrowth in implementing the restoration of functional neurotransmitter release (at a time when nerve stimulation again elicited muscle contraction). Interestingly, sprouts are only transitory since a second distinct phase of the rehabilitation process occurs with a return of synaptic activity to the original nerve terminals. This is accompanied by the elimination of the dispensable sprouts. The growth or elimination of these nerve processes appears to be strongly correlated with the level of synaptic activity at the parent terminal. The BoNT/A-induced extension and later removal of "functional" sprouts indicate their fundamental importance in the rehabilitation of paralysed endplates, a finding with ramifications for the vital process of nerve regeneration.
神经肌肉接头是哺乳动物中最易于研究的突触之一,为研究一生中发生的长期突触修饰提供了一个有用的模型。它也是肉毒杆菌神经毒素(BoNTs)的天然靶点,肉毒杆菌神经毒素会选择性阻断乙酰胆碱的调节性胞吐作用,从而引发严重但短暂的肌肉麻痹。本综述的范围是描述肉毒杆菌毒素中毒所涉及的主要步骤,从导致麻痹的早期事件到引发令人印象深刻的突触重塑并最终实现神经肌肉传递功能恢复的细胞反应。BoNT/A治疗会促进中毒运动神经末梢和运动轴突远端发出大量新芽。目前的观点是,新芽具有形成功能性突触的能力,因为它们展示了胞吐作用所需的一些关键蛋白质:SNAP-25、VAMP/突触小泡蛋白、Syntaxin-I、突触结合蛋白-II、突触素以及电压激活的Na+、Ca2+和Ca2+激活的K+通道。体内实验(使用苯乙烯基染料FM1-43)证明,在功能恢复时,胞吐-内吞作用仅发生在新芽中,这强调了神经末梢生长在实现功能性神经递质释放恢复中的直接作用(此时神经刺激再次引发肌肉收缩)。有趣的是,新芽只是暂时存在的,因为康复过程的第二个不同阶段会随着突触活动恢复到原始神经末梢而出现。这伴随着多余新芽的消除。这些神经突起的生长或消除似乎与母终端的突触活动水平密切相关。BoNT/A诱导的“功能性”新芽的延伸以及随后的去除表明它们在麻痹终板的康复中至关重要,这一发现对神经再生的重要过程具有重要意义。