Goldhaber-Gordon Ilana, Williams Tanya L, Baker Tania A
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Biol Chem. 2002 Mar 8;277(10):7694-702. doi: 10.1074/jbc.M110341200. Epub 2001 Dec 27.
Mu transposition occurs within a large protein-DNA complex called a transpososome. This stable complex includes four subunits of MuA transposase, each contacting a 22-base pair recognition site located near an end of the transposon DNA. These MuA recognition sites are critical for assembling the transpososome. Here we report that when concentrations of Mu DNA are limited, the MuA recognition sites permit assembly of transpososomes in which non-Mu DNA substitutes for some of the Mu sequences. These "hybrid" transpososomes are stable to competitor DNA, actively transpose the non-Mu DNA, and produce transposition products that had been previously observed but not explained. The strongest activator of non-Mu transposition is a DNA fragment containing two MuA recognition sites and no cleavage site, but a shorter fragment with just one recognition site is sufficient. Based on our results, we propose that MuA recognition sites drive assembly of functional transpososomes in two complementary ways. Multiple recognition sites help physically position MuA subunits in the transpososome plus each individual site allosterically activates transposase.
Mu转座发生在一种名为转座体的大型蛋白质-DNA复合物内。这种稳定的复合物包含四个MuA转座酶亚基,每个亚基都与位于转座子DNA一端附近的一个22碱基对识别位点相互作用。这些MuA识别位点对于转座体的组装至关重要。在此我们报告,当Mu DNA的浓度有限时,MuA识别位点允许转座体的组装,其中非Mu DNA替代了一些Mu序列。这些“杂交”转座体对竞争DNA具有稳定性,能主动转座非Mu DNA,并产生先前已观察到但未得到解释的转座产物。非Mu转座的最强激活剂是一个包含两个MuA识别位点且无切割位点的DNA片段,但一个仅含一个识别位点的较短片段就足够了。基于我们的结果,我们提出MuA识别位点以两种互补方式驱动功能性转座体的组装。多个识别位点有助于在转座体中物理定位MuA亚基,并且每个单独的位点通过变构激活转座酶。