Faijes M, Fairweather J K, Driguez H, Planas A
Laboratori de Bioquímica, Institut Químic de Sarrià Universitat Ramon Llull, Barcelona, Spain.
Chemistry. 2001 Nov 5;7(21):4651-5. doi: 10.1002/1521-3765(20011105)7:21<4651::aid-chem4651>3.0.co;2-6.
Glycosynthases are engineered glycosidases which are hydrolytically inactive yet efficiently catalyse transglycosylation reactions of glycosyl fluoride donors, and are thus promising tools for the enzymatic synthesis of oligosaccharides. Two endo-glycosynthases, the E134A mutant of 1,3/1,4-beta-glucanase from Bacillus licheniformis and the E197A mutant of cellulase Cel7B from Humicola insolens, were used in coupled reactions for the stepwise synthesis of hexasaccharide substrates of 1,3/1,4-beta-glucanases. Because the two endo-glycosynthases show different specificity, towards laminaribiosyl and cellobiosyl donors, respectively, the target hexasaccharides were prepared by condensation of the corresponding disaccharide building blocks through sequential addition of the glycosynthases in a "one-pot" process. Different strategies were used to achieve the desired transglycosylation between donor and acceptor in each step, and to prevent unwanted elongation of the first condensation product and polymerization (self-condensation) of the donor: 1) selection of disaccharide donors differing in the configuration of the hydroxyl substituent normally acting as acceptor, 2) temporary protection of the polymerizable hydroxyl group of the donor, or 3) addition of an excess of acceptor to decrease the probability that the donor can act as an acceptor. The best procedure involved the condensation of alpha-lactosyl or 4II-O-tetrahydropyranyl-alpha-cellobiosyl fluorides with alpha-laminaribiosyl fluoride, catalyzed by E197A Cel7B, to give tetrasaccharide fluorides, which were then the donors for in situ condensation with methyl beta-cellobioside catalyzed by E134A 1,3/1,4-beta-glucanase. After isolation, the final hexasaccharides Gal/beta4Glcbeta4Glcbeta3Glcbeta4Glcbeta4Glcbeta-OMe and Glcbeta4Glcbeta4Glcbeta3Glcbeta4Glcbeta4-Glcbeta-OMe were obtained in 70-80% overall yields.
糖基合成酶是经过改造的糖苷酶,它们水解无活性,但能高效催化糖基氟供体的转糖基化反应,因此是寡糖酶促合成中有前景的工具。两种内切糖基合成酶,地衣芽孢杆菌1,3/1,4-β-葡聚糖酶的E134A突变体和特异腐质霉纤维素酶Cel7B的E197A突变体,用于逐步合成1,3/1,4-β-葡聚糖酶六糖底物的偶联反应。由于这两种内切糖基合成酶分别对层叠二糖基和纤维二糖基供体表现出不同的特异性,因此通过在“一锅法”中依次添加糖基合成酶,使相应的二糖结构单元缩合,制备出目标六糖。在每一步中,采用了不同的策略来实现供体和受体之间所需的转糖基化,并防止第一个缩合产物的不必要延长和供体的聚合(自缩合):1)选择在通常作为受体的羟基取代基构型上不同的二糖供体,2)暂时保护供体的可聚合羟基,或3)添加过量的受体以降低供体作为受体的可能性。最佳方法是在E197A Cel7B催化下,使α-乳糖基或4II-O-四氢吡喃基-α-纤维二糖基氟化物与α-层叠二糖基氟化物缩合,得到四糖氟化物,然后它们作为供体,在E134A 1,3/1,4-β-葡聚糖酶催化下与甲基β-纤维二糖苷进行原位缩合。分离后,最终的六糖Gal/β4Glcβ4Glcβ3Glcβ4Glcβ4Glcβ-OMe和Glcβ4Glcβ4Glcβ3Glcβ4Glcβ4-Glcβ-OMe的总产率为70-80%。