Suppr超能文献

学习伸手动作的动力学可导致手臂阻抗和长潜伏期扰动反应的改变。

Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.

作者信息

Wang T, Dordevic G S, Shadmehr R

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 419 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, USA.

出版信息

Biol Cybern. 2001 Dec;85(6):437-48. doi: 10.1007/s004220100277.

Abstract

Some characteristics of arm movements that humans exhibit during learning the dynamics of reaching are consistent with a theoretical framework where training results in motor commands that are gradually modified to predict and compensate for novel forces that may act on the hand. As a first approximation, the motor control system behaves as an adapting controller that learns an internal model of the dynamics of the task. It approximates inverse dynamics and predicts motor commands that are appropriate for a desired limb trajectory. However, we had previously noted that subtle motion characteristics observed during changes in task dynamics challenged this simple model and raised the possibility that adaptation also involved sensory-motor feedback pathways. These pathways reacted to sensory feedback during the course of the movement. Here we hypothesize that adaptation to dynamics might also involve a modification of how the CNS responds to sensory feedback. We tested this through experiments that quantified how the motor system's response to errors during voluntary movements changed as it adapted to dynamics of a force field. We describe a nonlinear approach that approximates the impedance of the arm, i.e., force response as a function of arm displacement trajectory. We observe that after adaptation, the impedance function changes in a way that closely matches and counters the effect of the force field. This is particularly prominent in the long-latency (> 100 ms) component of response to perturbations. Therefore, it appears that practice not only modifies the internal model with which the brain generates motor commands that initiate a movement, but also the internal model with which sensory feedback is integrated with the ongoing descending commands in order to respond to error during the movement.

摘要

人类在学习伸手动作动力学过程中表现出的一些手臂运动特征,与一个理论框架相一致,在该框架中,训练会导致运动指令逐渐修改,以预测和补偿可能作用于手部的新力。作为初步近似,运动控制系统表现为一个自适应控制器,它学习任务动力学的内部模型。它近似逆动力学并预测适合期望肢体轨迹的运动指令。然而,我们之前曾指出,在任务动力学变化期间观察到的细微运动特征对这个简单模型提出了挑战,并增加了适应性也涉及感觉运动反馈通路的可能性。这些通路在运动过程中对感觉反馈做出反应。在这里,我们假设对动力学的适应可能还涉及中枢神经系统对感觉反馈的反应方式的改变。我们通过实验对此进行了测试,这些实验量化了运动系统在适应力场动力学时,其对自愿运动中误差的反应是如何变化的。我们描述了一种非线性方法,该方法近似手臂的阻抗,即作为手臂位移轨迹函数的力响应。我们观察到,适应后,阻抗函数的变化方式与力场的影响紧密匹配并抵消。这在对扰动的长潜伏期(>100毫秒)响应成分中尤为突出。因此,似乎练习不仅修改了大脑用于生成启动运动的运动指令的内部模型,还修改了用于将感觉反馈与正在进行的下行指令整合以在运动过程中对误差做出反应的内部模型。

相似文献

2
Preparing to reach: selecting an adaptive long-latency feedback controller.
J Neurosci. 2012 Jul 11;32(28):9537-45. doi: 10.1523/JNEUROSCI.4275-11.2012.
3
The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System.
J Neurosci. 2016 Apr 27;36(17):4832-45. doi: 10.1523/JNEUROSCI.0159-16.2016.
4
Dissociating the Influence of Limb Posture and Visual Feedback Shifts on the Adaptation to Novel Movement Dynamics.
Neuroscience. 2024 Jun 21;549:24-41. doi: 10.1016/j.neuroscience.2024.02.033. Epub 2024 Mar 13.
5
Manipulating objects with internal degrees of freedom: evidence for model-based control.
J Neurophysiol. 2002 Jul;88(1):222-35. doi: 10.1152/jn.2002.88.1.222.
6
Divided attention impairs human motor adaptation but not feedback control.
J Neurophysiol. 2007 Jul;98(1):317-26. doi: 10.1152/jn.01070.2006. Epub 2007 Apr 25.
7
Shared internal models for feedforward and feedback control.
J Neurosci. 2008 Oct 15;28(42):10663-73. doi: 10.1523/JNEUROSCI.5479-07.2008.
8
Different mechanisms involved in adaptation to stable and unstable dynamics.
J Neurophysiol. 2003 Nov;90(5):3255-69. doi: 10.1152/jn.00073.2003.
9
A real-time state predictor in motor control: study of saccadic eye movements during unseen reaching movements.
J Neurosci. 2002 Sep 1;22(17):7721-9. doi: 10.1523/JNEUROSCI.22-17-07721.2002.
10
Robust Control in Human Reaching Movements: A Model-Free Strategy to Compensate for Unpredictable Disturbances.
J Neurosci. 2019 Oct 9;39(41):8135-8148. doi: 10.1523/JNEUROSCI.0770-19.2019. Epub 2019 Sep 5.

引用本文的文献

1
Human Stiffness Perception and Learning in Interacting With Compliant Environments.
Front Neurosci. 2022 Jun 6;16:841901. doi: 10.3389/fnins.2022.841901. eCollection 2022.
3
Estimation of Involuntary Components of Human Arm Impedance in Multi-Joint Movements via Feedback Jerk Isolation.
Front Neurosci. 2020 May 25;14:459. doi: 10.3389/fnins.2020.00459. eCollection 2020.
4
Feedforward and Feedback Control Share an Internal Model of the Arm's Dynamics.
J Neurosci. 2018 Dec 5;38(49):10505-10514. doi: 10.1523/JNEUROSCI.1709-18.2018. Epub 2018 Oct 24.
5
Muscle patterns underlying voluntary modulation of co-contraction.
PLoS One. 2018 Oct 19;13(10):e0205911. doi: 10.1371/journal.pone.0205911. eCollection 2018.
6
The Mechanical Representation of Temporal Delays.
Sci Rep. 2017 Aug 9;7(1):7669. doi: 10.1038/s41598-017-07289-3.
7
Mechanical Impedance and Its Relations to Motor Control, Limb Dynamics, and Motion Biomechanics.
J Med Biol Eng. 2015;35(1):1-20. doi: 10.1007/s40846-015-0016-9. Epub 2015 Jan 27.
8
Convergent models of handedness and brain lateralization.
Front Psychol. 2014 Oct 8;5:1092. doi: 10.3389/fpsyg.2014.01092. eCollection 2014.
9
Effects of predictability of load magnitude on the response of the Flexor Digitorum Superficialis to a sudden fingers extension.
PLoS One. 2014 Oct 1;9(10):e109067. doi: 10.1371/journal.pone.0109067. eCollection 2014.
10
Priors engaged in long-latency responses to mechanical perturbations suggest a rapid update in state estimation.
PLoS Comput Biol. 2013;9(8):e1003177. doi: 10.1371/journal.pcbi.1003177. Epub 2013 Aug 15.

本文引用的文献

1
Computational principles of movement neuroscience.
Nat Neurosci. 2000 Nov;3 Suppl:1212-7. doi: 10.1038/81497.
2
Learning of action through adaptive combination of motor primitives.
Nature. 2000 Oct 12;407(6805):742-7. doi: 10.1038/35037588.
4
Impedance characteristics of a neuromusculoskeletal model of the human arm II. Movement control.
Biol Cybern. 1999 Nov;81(5-6):495-504. doi: 10.1007/s004220050578.
5
Electromyographic correlates of learning an internal model of reaching movements.
J Neurosci. 1999 Oct 1;19(19):8573-88. doi: 10.1523/JNEUROSCI.19-19-08573.1999.
8
Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man.
J Physiol. 1998 Oct 1;512 ( Pt 1)(Pt 1):267-76. doi: 10.1111/j.1469-7793.1998.267bf.x.
9
Human arm stiffness and equilibrium-point trajectory during multi-joint movement.
Biol Cybern. 1997 Mar;76(3):163-71. doi: 10.1007/s004220050329.
10
Functional stages in the formation of human long-term motor memory.
J Neurosci. 1997 Jan 1;17(1):409-19. doi: 10.1523/JNEUROSCI.17-01-00409.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验