Suppr超能文献

通过运动原语的适应性组合来学习动作。

Learning of action through adaptive combination of motor primitives.

作者信息

Thoroughman K A, Shadmehr R

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA.

出版信息

Nature. 2000 Oct 12;407(6805):742-7. doi: 10.1038/35037588.

Abstract

Understanding how the brain constructs movements remains a fundamental challenge in neuroscience. The brain may control complex movements through flexible combination of motor primitives, where each primitive is an element of computation in the sensorimotor map that transforms desired limb trajectories into motor commands. Theoretical studies have shown that a system's ability to learn action depends on the shape of its primitives. Using a time-series analysis of error patterns, here we show that humans learn the dynamics of reaching movements through a flexible combination of primitives that have gaussian-like tuning functions encoding hand velocity. The wide tuning of the inferred primitives predicts limitations on the brain's ability to represent viscous dynamics. We find close agreement between the predicted limitations and the subjects' adaptation to new force fields. The mathematical properties of the derived primitives resemble the tuning curves of Purkinje cells in the cerebellum. The activity of these cells may encode primitives that underlie the learning of dynamics.

摘要

理解大脑如何构建运动仍然是神经科学中的一项基本挑战。大脑可能通过运动基元的灵活组合来控制复杂运动,其中每个基元都是感觉运动映射中计算的一个元素,该映射将期望的肢体轨迹转换为运动指令。理论研究表明,系统学习动作的能力取决于其基元的形状。通过对误差模式进行时间序列分析,我们在此表明,人类通过具有编码手部速度的类高斯调谐函数的基元的灵活组合来学习伸手动作的动力学。推断出的基元的广泛调谐预示了大脑表征粘性动力学能力的局限性。我们发现预测的局限性与受试者对新力场的适应性之间有密切的一致性。推导得出的基元的数学特性类似于小脑浦肯野细胞的调谐曲线。这些细胞的活动可能编码了构成动力学学习基础的基元。

相似文献

3
On the encoding capacity of human motor adaptation.论人类运动适应的编码能力。
J Neurophysiol. 2021 Jul 1;126(1):123-139. doi: 10.1152/jn.00593.2020. Epub 2021 Jun 2.
4
An error-tuned model for sensorimotor learning.一种用于感觉运动学习的误差调整模型。
PLoS Comput Biol. 2017 Dec 18;13(12):e1005883. doi: 10.1371/journal.pcbi.1005883. eCollection 2017 Dec.
8
Spatial generalization from learning dynamics of reaching movements.基于伸手动作学习动力学的空间泛化。
J Neurosci. 2000 Oct 15;20(20):7807-15. doi: 10.1523/JNEUROSCI.20-20-07807.2000.
10
Generalization in adaptation to stable and unstable dynamics.适应稳定和不稳定动力学的泛化。
PLoS One. 2012;7(10):e45075. doi: 10.1371/journal.pone.0045075. Epub 2012 Oct 8.

引用本文的文献

1
Causal inference, prediction and state estimation in sensorimotor learning.感觉运动学习中的因果推理、预测与状态估计
Proc Biol Sci. 2025 Aug;292(2052):20251320. doi: 10.1098/rspb.2025.1320. Epub 2025 Aug 13.
4
Success-efficient/failure-safe strategy for hierarchical reinforcement motor learning.分层强化运动学习的成功高效/失败安全策略。
PLoS Comput Biol. 2025 May 9;21(5):e1013089. doi: 10.1371/journal.pcbi.1013089. eCollection 2025 May.
5
Control signal dimensionality depends on limb dynamics.控制信号维度取决于肢体动力学。
PLoS One. 2025 Apr 30;20(4):e0322092. doi: 10.1371/journal.pone.0322092. eCollection 2025.

本文引用的文献

6
Directional tuning profiles of motor cortical cells.运动皮层细胞的方向调谐曲线
Neurosci Res. 2000 Jan;36(1):73-9. doi: 10.1016/s0168-0102(99)00112-1.
10
Central representation of time during motor learning.运动学习过程中时间的中枢表征。
Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11625-30. doi: 10.1073/pnas.96.20.11625.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验