Suppr超能文献

神经编码与解码:通信通道与量化

Neural coding and decoding: communication channels and quantization.

作者信息

Dimitrov A G, Miller J P

机构信息

Center for Computational Biology, Montana State University, Bozeman 59717-3148, USA.

出版信息

Network. 2001 Nov;12(4):441-72.

Abstract

We present a novel analytical approach for studying neural encoding. As a first step we model a neural sensory system as a communication channel. Using the method of typical sequence in this context, we show that a coding scheme is an almost bijective relation between equivalence classes of stimulus/response pairs. The analysis allows a quantitative determination of the type of information encoded in neural activity patterns and, at the same time, identification of the code with which that information is represented. Due to the high dimensionality of the sets involved, such a relation is extremely difficult to quantify. To circumvent this problem, and to use whatever limited data set is available most efficiently, we use another technique from information theory--quantization. We quantize the neural responses to a reproduction set of small finite size. Among many possible quantizations, we choose one which preserves as much of the informativeness of the original stimulus/response relation as possible, through the use of an information-based distortion function. This method allows us to study coarse but highly informative approximations of a coding scheme model, and then to refine them automatically when more data become available.

摘要

我们提出了一种用于研究神经编码的新型分析方法。第一步,我们将神经感觉系统建模为一个通信通道。在此背景下使用典型序列方法,我们表明编码方案是刺激/反应对等价类之间的一种几乎双射的关系。该分析允许对神经活动模式中编码的信息类型进行定量确定,同时识别表示该信息的代码。由于所涉及集合的高维性,这种关系极难量化。为了规避这个问题,并最有效地利用任何可用的有限数据集,我们使用信息论中的另一种技术——量化。我们将神经反应量化到一个小的有限大小的再现集。在许多可能的量化中,我们通过使用基于信息的失真函数选择一种尽可能保留原始刺激/反应关系信息性的量化。这种方法使我们能够研究编码方案模型的粗略但信息丰富的近似,然后在有更多数据可用时自动对其进行细化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验