Eger M, Eckhorn R
Department of Physics, Neurophysics Group, Philipps-University, Renthof 7, 35032 Marburg, Germany.
J Comput Neurosci. 2002 May-Jun;12(3):175-200. doi: 10.1023/a:1016583328930.
We present a new method to characterize multi-input and output neuronal systems using information theory. To obtain a lower bound of transinformation we take three steps: (1) Estimation of the deterministic response to isolate components carrying stimulus information. The deviation of the original response from the deterministic estimate is defined as noise. (2) Coordinate transformation using PCA yields an uncorrelated representation. (3) Partial transinformation values are calculated independently either by Shannon's formula assuming normality or based on density estimation for arbitrary distributions. We investigate the performance of the algorithms using simulated data and discuss suitable parameter settings. The approach allows to evaluate the degree to which stimulus features are encoded. Its potential is illustrated by analyses of neuronal activity in cat primary visual cortex evoked by electrical retina stimulation.
我们提出了一种利用信息论来表征多输入和输出神经元系统的新方法。为了获得互信息的下限,我们采取三个步骤:(1)确定性响应估计,以分离携带刺激信息的成分。原始响应与确定性估计的偏差被定义为噪声。(2)使用主成分分析进行坐标变换,得到不相关的表示。(3)部分互信息值通过假设正态性的香农公式独立计算,或者基于任意分布的密度估计来计算。我们使用模拟数据研究了算法的性能,并讨论了合适的参数设置。该方法能够评估刺激特征被编码的程度。通过对视网膜电刺激诱发的猫初级视觉皮层神经元活动的分析,说明了该方法的潜力。