Goldshleger R, Patchornik G, Shimon M B, Tal D M, Post R L, Karlish S J
Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth, Israel.
J Bioenerg Biomembr. 2001 Oct;33(5):387-99. doi: 10.1023/a:1010615422932.
This chapter describes contributions of transition metal-catalyzed oxidative cleavage of Na+,K+-ATPase to our understanding of structure-function relations. In the presence of ascorbate/H2O2, specific cleavages are catalyzed by the bound metal and because more than one peptide bond close to the metal can be cleaved, this technique reveals proximity of the different cleavage positions within the native structure. Specific cleavages are catalyzed by Fe2+ bound at the cytoplasmic surface or by complexes of ATP-Fe2+, which directs the Fe2+ to the normal ATP-Mg2+ site. Fe2+- and ATP-Fe2+-catalyzed cleavages reveal large conformation-dependent changes in interactions between cytoplasmic domains, involving conserved cytoplasmic sequences, and a change of ligation of Mg2+ ions between E1P and E2P, which may be crucial in facilitating hydrolysis of E2P. The pattern of domain interactions in E1 and E2 conformations, and role of Mg2+ ions, may be common to all P-type pumps. Specific cleavages can also be catalyzed by Cu2+ ions, bound at the extracellular surfaces, or a hydrophobic Cu2+-diphenyl phenanthroline (DPP) complex, which directs the Cu2+ to the membrane-water interface. Cu2+ or Cu2+-DPP-catalyzed cleavages are providing information on alpha/beta subunit interactions and spatial organization of transmembrane segments. Transition metal-catalyzed cleavage could be widely used to investigate other P-type pumps and membrane proteins and, especially, ATP binding proteins.
本章描述了过渡金属催化的Na⁺,K⁺-ATP酶氧化裂解对我们理解结构-功能关系的贡献。在抗坏血酸/H₂O₂存在的情况下,结合的金属催化特定的裂解反应,并且由于靠近金属的不止一个肽键可以被裂解,该技术揭示了天然结构中不同裂解位置的接近程度。在细胞质表面结合的Fe²⁺或ATP-Fe²⁺复合物催化特定的裂解反应,ATP-Fe²⁺复合物将Fe²⁺导向正常的ATP-Mg²⁺位点。Fe²⁺和ATP-Fe²⁺催化的裂解反应揭示了细胞质结构域之间相互作用的巨大构象依赖性变化,涉及保守的细胞质序列,以及E1P和E2P之间Mg²⁺离子配位的变化,这可能对促进E2P的水解至关重要。E1和E2构象中结构域相互作用的模式以及Mg²⁺离子的作用可能是所有P型泵共有的。在细胞外表面结合的Cu²⁺离子或疏水性Cu²⁺-二苯基菲咯啉(DPP)复合物也可以催化特定的裂解反应,该复合物将Cu²⁺导向膜-水界面。Cu²⁺或Cu²⁺-DPP催化的裂解反应提供了关于α/β亚基相互作用和跨膜片段空间组织的信息。过渡金属催化的裂解反应可广泛用于研究其他P型泵和膜蛋白,特别是ATP结合蛋白。