Strugatsky David, Gottschalk Kay-Eberhard, Goldshleger Rivka, Bibi Eitan, Karlish Steven J D
Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth, 76100, Israel.
J Biol Chem. 2003 Nov 14;278(46):46064-73. doi: 10.1074/jbc.M308303200. Epub 2003 Aug 29.
Na+,K+-ATPase (pig alpha1,beta1) has been expressed in the methylotrophic yeast Pichia pastoris. A protease-deficient strain was used, recombinant clones were screened for multicopy genomic integrants, and protein expression, and time and temperature of methanol induction were optimized. A 3-liter culture provides 300-500 mg of membrane protein with ouabain binding capacity of 30-50 pmol mg-1. Turnover numbers of recombinant and renal Na+,K+-ATPase are similar, as are specific chymotryptic cleavages. Wild type (WT) and a D369N mutant have been analyzed by Fe2+- and ATP-Fe2+-catalyzed oxidative cleavage, described for renal Na+,K+-ATPase. Cleavage of the D369N mutant provides strong evidence for two Fe2+ sites: site 1 composed of residues in P and A cytoplasmic domains, and site 2 near trans-membrane segments M3/M1. The D369N mutation suppresses cleavages at site 1, which appears to be a normal Mg2+ site in E2 conformations. The results suggest a possible role of the charge of Asp369 on the E1 <--> E2 conformational equilibrium. 5'-Adenylyl-beta,gamma-imidodi-phosphate(AMP-PNP)-Fe2+-catalyzed cleavage of the D369N mutant produces fragments in P (712VNDS) and N (near 440VAGDA) domains, described for WT, but only at high AMP-PNP-Fe2+ concentrations, and a new fragment in the P domain (near 367CSDKTGT) resulting from cleavage. Thus, the mutation distorts the active site. A molecular dynamic simulation of ATP-Mg2+ binding to WT and D351N structures of Ca2+-ATPase (analogous to Asp369 of Na+,K+-ATPase) supplies possible explanations for the new cleavage and for a high ATP affinity, which was observed previously for the mutant. The Asn351 structure with bound ATP-Mg2+ may resemble the transition state of the WT poised for phosphorylation.
钠钾-ATP酶(猪α1,β1)已在甲基营养型酵母毕赤酵母中表达。使用了蛋白酶缺陷型菌株,筛选重组克隆以获得多拷贝基因组整合体,并对蛋白质表达以及甲醇诱导的时间和温度进行了优化。3升培养物可提供300 - 500毫克膜蛋白,其哇巴因结合能力为30 - 50皮摩尔/毫克。重组钠钾-ATP酶和肾钠钾-ATP酶的周转数相似,胰凝乳蛋白酶特异性切割情况也相似。野生型(WT)和D369N突变体已通过铁离子(Fe2 +)和ATP - Fe2 +催化的氧化切割进行分析,该方法已用于肾钠钾-ATP酶的研究。D369N突变体的切割为两个Fe2 +位点提供了有力证据:位点1由P和A细胞质结构域中的残基组成,位点2靠近跨膜片段M3/M1。D369N突变抑制了位点1的切割,位点1在E2构象中似乎是正常的镁离子(Mg2 +)位点。结果表明天冬氨酸369的电荷对E1⇌E2构象平衡可能具有作用。5'-腺苷酰-β,γ-亚氨基二磷酸(AMP-PNP)-Fe2 +催化的D369N突变体切割产生了WT中所述的P结构域(712VNDS)和N结构域(靠近440VAGDA)的片段,但仅在高浓度AMP-PNP-Fe2 +时出现,并且切割产生了P结构域中的一个新片段(靠近367CSDKTGT)。因此,该突变使活性位点发生了畸变。对钙ATP酶(类似于钠钾-ATP酶的天冬氨酸369)的WT和D351N结构进行ATP-Mg2 +结合的分子动力学模拟,为新的切割以及先前观察到的该突变体的高ATP亲和力提供了可能的解释。结合ATP-Mg2 +的天冬酰胺351结构可能类似于处于磷酸化准备状态的WT的过渡态。