Suppr超能文献

将两种已知检测限的病毒载量检测方法进行关联。

Correlating two viral load assays with known detection limits.

作者信息

Lyles R H, Williams J K, Chuachoowong R

机构信息

Department of Biostatistics, The Rollins School of Public Health of Emory University, Atlanta, Georgia 30322, USA.

出版信息

Biometrics. 2001 Dec;57(4):1238-44. doi: 10.1111/j.0006-341x.2001.01238.x.

Abstract

A timely objective common to many HIV studies involves assessing the correlation between two different measures of viral load obtained from each of a sample of patients. This correlation has scientific utility in a number of contexts, including those aimed at a comparison of competing assays for quantifying virus and those aimed at determining the level of association between viral loads in two different reservoirs using the same assay. A complication for the analyst seeking valid point and interval estimates of such a correlation is the fact that both variables may be subject to left censoring due to values below assay detection limits. We address this problem using a bivariate normal likelihood that accounts for left censoring of two variables that may have different detection limits. We provide simulation results to evaluate sampling properties of the resulting correlation estimator and compare it with ad hoc estimators in the presence of nondetects. In an effort to obtain improved confidence interval properties relative to the Wald approach, we evaluate and compare profile likelihood-based intervals. We apply the methods to HIV viral load data on women and infants from a trial in Bangkok, Thailand, and we discuss an extension of the original model to accommodate interval censoring arising due to the study design.

摘要

许多艾滋病病毒研究共有的一个及时目标是评估从一组患者样本中获得的两种不同病毒载量测量值之间的相关性。这种相关性在许多情况下具有科学用途,包括旨在比较用于量化病毒的竞争性检测方法的情况,以及旨在使用相同检测方法确定两个不同储存库中病毒载量之间关联程度的情况。对于寻求这种相关性有效点估计和区间估计的分析人员来说,一个复杂情况是两个变量都可能因低于检测限的值而受到左删失。我们使用双变量正态似然性来解决这个问题,该似然性考虑了两个可能具有不同检测限的变量的左删失。我们提供模拟结果以评估所得相关性估计量的抽样特性,并在存在未检测值的情况下将其与临时估计量进行比较。为了相对于 Wald 方法获得改进的置信区间特性,我们评估并比较基于轮廓似然性的区间。我们将这些方法应用于来自泰国曼谷一项试验的妇女和婴儿的艾滋病病毒载量数据,并讨论原始模型的扩展,以适应由于研究设计而产生的区间删失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验