Sviderskaia N E, Seredenin S B, Korol'kova T A, Kozhechkin S N, Kozhedub R G, Koshtoiants O Kh
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences.
Zh Vyssh Nerv Deiat Im I P Pavlova. 2001 Sep-Oct;51(5):617-25.
The features of the EEG spatial organization in two rat strains, i.e., with expressed emotional reactions (Maudsley reactive, MR) and less reactive (Maudsley nonreactive, MNR) were compared in two stress situations: during exposure to the action of pain (P) (i.p. injection of 0.9% NaCl solution) and during 24-hour water deprivation (D). Multichannel EEG recording (24 derivations) and their multiparametric estimation (840 signs) made it possible to differentiate characteristic features of the EEG spatial organization in rats with initially increased emotional reactions and passive behavioral strategy during exposure to stress. In both stress-inducing conditions, an increase in crosscorrelation and coherence between cortical potentials in parallel with rise of the spectral power in the range of high-frequency theta and its drop in the range of EEG high-frequency band was observed in the MR rats. The MNR rats showed the opposite changes. Different reactivity of the ratio between the coherence and spectral power of potentials was observed in two strains of rats. This index characterizes the level of the information-energy component of the spatial organization of cortical potentials. It is suggested that different character of the EEG changes reflects the features of interhemispheric relations, information-energy processes, and cortical regulation of autonomic processes in the system of adaptive stress reactions at different levels of emotionality and behavioral strategy.