Bermejo S, Cabestany J
Department of Electronic Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
Neural Netw. 2001 Dec;14(10):1447-61. doi: 10.1016/s0893-6080(01)00106-x.
Large margin classifiers (such as MLPs) are designed to assign training samples with high confidence (or margin) to one of the classes. Recent theoretical results of these systems show why the use of regularisation terms and feature extractor techniques can enhance their generalisation properties. Since the optimal subset of features selected depends on the classification problem, but also on the particular classifier with which they are used, global learning algorithms for large margin classifiers that use feature extractor techniques are desired. A direct approach is to optimise a cost function based on the margin error, which also incorporates regularisation terms for controlling capacity. These terms must penalise a classifier with the largest margin for the problem at hand. Our work shows that the inclusion of a PCA term can be employed for this purpose. Since PCA only achieves an optimal discriminatory projection for some particular distribution of data, the margin of the classifier can then be effectively controlled. We also propose a simple constrained search for the global algorithm in which the feature extractor and the classifier are trained separately. This allows a degree of flexibility for including heuristics that can enhance the search and the performance of the computed solution. Experimental results demonstrate the potential of the proposed method.
大间隔分类器(如多层感知器)旨在将具有高置信度(或间隔)的训练样本分配到其中一个类别。这些系统最近的理论结果表明了为何使用正则化项和特征提取器技术能够增强它们的泛化特性。由于所选择的最优特征子集既取决于分类问题,也取决于使用这些特征的特定分类器,因此需要用于大间隔分类器的全局学习算法,这些算法要使用特征提取器技术。一种直接的方法是基于间隔误差优化一个代价函数,该代价函数还纳入了用于控制容量的正则化项。这些项必须惩罚针对手头问题具有最大间隔的分类器。我们的工作表明,可以为此目的采用包含主成分分析(PCA)项的方法。由于主成分分析仅针对某些特定的数据分布实现最优的判别投影,因此可以有效地控制分类器的间隔。我们还为全局算法提出了一种简单的约束搜索方法,其中特征提取器和分类器是分开训练的。这为纳入可增强搜索和计算解性能的启发式方法提供了一定程度的灵活性。实验结果证明了所提方法的潜力。