Centre for Applied Informatics, College of Engineering and Science, Victoria University, Melbourne, Australia.
College of Engineering and Science, Victoria University, Melbourne, Australia.
Comput Methods Programs Biomed. 2017 Jul;146:47-57. doi: 10.1016/j.cmpb.2017.05.009. Epub 2017 May 24.
Feature extraction of EEG signals plays a significant role in Brain-computer interface (BCI) as it can significantly affect the performance and the computational time of the system. The main aim of the current work is to introduce an innovative algorithm for acquiring reliable discriminating features from EEG signals to improve classification performances and to reduce the time complexity.
This study develops a robust feature extraction method combining the principal component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory information from the mental states based on EEG signals in BCI applications. We apply the correlation based variable selection method with the best first search on the extracted features to identify the best feature set for characterizing the distribution of mental state signals. To verify the robustness of the proposed feature extraction method, three machine learning techniques: multilayer perceptron neural networks (MLP), least square support vector machine (LS-SVM), and logistic regression (LR) are employed on the obtained features. The proposed methods are evaluated on two publicly available datasets. Furthermore, we evaluate the performance of the proposed methods by comparing it with some recently reported algorithms.
The experimental results show that all three classifiers achieve high performance (above 99% overall classification accuracy) for the proposed feature set. Among these classifiers, the MLP and LS-SVM methods yield the best performance for the obtained feature. The average sensitivity, specificity and classification accuracy for these two classifiers are same, which are 99.32%, 100%, and 99.66%, respectively for the BCI competition dataset IVa and 100%, 100%, and 100%, for the BCI competition dataset IVb. The results also indicate the proposed methods outperform the most recently reported methods by at least 0.25% average accuracy improvement in dataset IVa. The execution time results show that the proposed method has less time complexity after feature selection.
The proposed feature extraction method is very effective for getting representatives information from mental states EEG signals in BCI applications and reducing the computational complexity of classifiers by reducing the number of extracted features.
脑-机接口(BCI)中,EEG 信号的特征提取非常重要,因为它会显著影响系统的性能和计算时间。本研究的主要目的是提出一种创新的算法,从 EEG 信号中获取可靠的判别特征,以提高分类性能并降低时间复杂度。
本研究提出了一种稳健的特征提取方法,结合主成分分析(PCA)和互协方差技术(CCOV),从基于 EEG 信号的 BCI 应用中的心理状态中提取判别信息。我们应用基于相关性的变量选择方法和最佳优先搜索,对提取的特征进行处理,以确定最佳特征集,用于描述心理状态信号的分布。为了验证所提出的特征提取方法的鲁棒性,我们在获得的特征上应用了三种机器学习技术:多层感知器神经网络(MLP)、最小二乘支持向量机(LS-SVM)和逻辑回归(LR)。在两个公开可用的数据集上评估了所提出的方法。此外,我们通过与一些最近报道的算法进行比较,来评估所提出方法的性能。
实验结果表明,对于所提出的特征集,所有三种分类器都能达到很高的性能(总体分类准确率超过 99%)。在这些分类器中,MLP 和 LS-SVM 方法在获得的特征上表现出最佳的性能。对于这两个分类器,平均灵敏度、特异性和分类准确率相同,对于 BCI 竞赛数据集 IVa 分别为 99.32%、100%和 99.66%,对于 BCI 竞赛数据集 IVb 分别为 100%、100%和 100%。结果还表明,在所提出的方法中,与数据集 IVa 中最近报道的方法相比,平均准确率提高了至少 0.25%。执行时间结果表明,在特征选择后,所提出的方法具有较低的时间复杂度。
所提出的特征提取方法对于从 BCI 应用中的心理状态 EEG 信号中获取代表性信息非常有效,通过减少提取特征的数量,降低了分类器的计算复杂度。