Suppr超能文献

日本常见扁盾蝽(Megacopta punctatissima)通过胶囊传播的肠道共生细菌。

Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima.

作者信息

Fukatsu Takema, Hosokawa Takahiro

机构信息

Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan.

出版信息

Appl Environ Microbiol. 2002 Jan;68(1):389-96. doi: 10.1128/AEM.68.1.389-396.2002.

Abstract

The Japanese common plataspid stinkbug, Megacopta punctatissima, deposits small brown particles, or symbiont capsules, on the underside of the egg mass for the purpose of transmission of symbiotic bacteria to the offspring. We investigated the microbiological aspects of the bacteria contained in the capsule, such as microbial diversity, phylogenetic placement, localization in vivo, and fitness effects on the host insect. Restriction fragment length polymorphism analysis of 16S ribosomal DNA clones revealed that a single bacterial species dominates the microbiota in the capsule. The bacterium was not detected in the eggs but in the capsules, which unequivocally demonstrated that the bacterium is transmitted to the offspring of the insect orally rather than transovarially, through probing of the capsule content. Molecular phylogenetic analysis showed that the bacterium belongs to the gamma-subdivision of the Proteobacteria. In adult insects the bacterium was localized in the posterior section of the midgut. Deprivation of the bacterium from the nymphs resulted in retarded development, arrested growth, abnormal body coloration, and other symptoms, suggesting that the bacterium is essential for normal development and growth of the host insect.

摘要

日本扁盾蝽(Megacopta punctatissima)会在卵块底部沉积小的棕色颗粒或共生体胶囊,以便将共生细菌传递给后代。我们研究了胶囊中所含细菌的微生物学特性,如微生物多样性、系统发育位置、体内定位以及对宿主昆虫的健康影响。对16S核糖体DNA克隆进行的限制性片段长度多态性分析表明,一种单一细菌在胶囊微生物群中占主导地位。该细菌在卵中未被检测到,但在胶囊中被检测到,这明确表明该细菌是通过吸食胶囊内容物经口而非经卵巢传递给昆虫后代的。分子系统发育分析表明,该细菌属于变形菌门的γ亚群。在成虫中,该细菌定位于中肠后部。若虫被剥夺该细菌会导致发育迟缓、生长停滞、体色异常及其他症状,这表明该细菌对宿主昆虫的正常发育和生长至关重要。

相似文献

1
Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima.
Appl Environ Microbiol. 2002 Jan;68(1):389-96. doi: 10.1128/AEM.68.1.389-396.2002.
2
The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima.
FEMS Microbiol Ecol. 2005 Nov 1;54(3):471-7. doi: 10.1016/j.femsec.2005.06.002. Epub 2005 Jul 21.
3
Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug Cantao ocellatus.
Appl Environ Microbiol. 2010 Jun;76(11):3486-94. doi: 10.1128/AEM.00421-10. Epub 2010 Apr 16.
4
Female-specific specialization of a posterior end region of the midgut symbiotic organ in Plautia splendens and allied stinkbugs.
Appl Environ Microbiol. 2015 Apr;81(7):2603-11. doi: 10.1128/AEM.04057-14. Epub 2015 Jan 30.
9
Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis.
Appl Environ Microbiol. 2010 Jul;76(13):4130-5. doi: 10.1128/AEM.00616-10. Epub 2010 May 7.

引用本文的文献

1
Applying evolutionary theory to understand host-microbiome evolution.
Nat Ecol Evol. 2025 Sep 8. doi: 10.1038/s41559-025-02846-w.
3
Dynamic reciprocal morphological changes in insect hosts and bacterial symbionts.
J Exp Biol. 2025 Jul 15;228(14). doi: 10.1242/jeb.249474. Epub 2025 Mar 31.
5
Co-habiting ants and silverfish display a converging feeding ecology.
BMC Biol. 2024 May 29;22(1):123. doi: 10.1186/s12915-024-01914-0.
6
Gut yeast diversity of (Lepidoptera: Noctuidae) under different dietary conditions.
Front Microbiol. 2024 May 2;15:1287083. doi: 10.3389/fmicb.2024.1287083. eCollection 2024.
7
Transmission dynamics of symbiotic protist communities in the termite gut: association with host adult eclosion and dispersal.
R Soc Open Sci. 2024 May 1;11(5):231527. doi: 10.1098/rsos.231527. eCollection 2024 May.
8
Actinomycetes associated with hymenopteran insects: a promising source of bioactive natural products.
Front Microbiol. 2024 Feb 28;15:1303010. doi: 10.3389/fmicb.2024.1303010. eCollection 2024.
9
Extracellular symbiont colonizes insect during embryo development.
ISME Commun. 2024 Jan 20;4(1):ycae005. doi: 10.1093/ismeco/ycae005. eCollection 2024 Jan.
10
Impact of intraspecific variation in insect microbiomes on host phenotype and evolution.
ISME J. 2023 Nov;17(11):1798-1807. doi: 10.1038/s41396-023-01500-2. Epub 2023 Sep 2.

本文引用的文献

1
Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera).
Appl Environ Microbiol. 2001 Mar;67(3):1284-91. doi: 10.1128/AEM.67.3.1284-1291.2001.
2
The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: homoptera).
Appl Environ Microbiol. 2000 Jul;66(7):2748-58. doi: 10.1128/AEM.66.7.2748-2758.2000.
3
Acetone preservation: a practical technique for molecular analysis.
Mol Ecol. 1999 Nov;8(11):1935-45. doi: 10.1046/j.1365-294x.1999.00795.x.
6
Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids.
Annu Rev Microbiol. 1995;49:55-94. doi: 10.1146/annurev.mi.49.100195.000415.
8
Effects of elevated temperature on the mycetome and symbiotes of the bed bug Cimex lectularius (Heteroptera).
J Invertebr Pathol. 1974 May;23(3):333-40. doi: 10.1016/0022-2011(74)90098-6.
10
Mycetocyte symbiosis in insects.
Biol Rev Camb Philos Soc. 1989 Nov;64(4):409-34. doi: 10.1111/j.1469-185x.1989.tb00682.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验