Suppr超能文献

在前臂缺血性阻滞期间,人类手部的皮质诱发神经冲动会增加。

Cortically evoked neural volleys to the human hand are increased during ischaemic block of the forearm.

作者信息

McNulty P A, Macefield V G, Taylor J L, Hallett M

机构信息

Prince of Wales Medical Research Institute and University of New South Wales, Sydney, NSW, Australia.

出版信息

J Physiol. 2002 Jan 1;538(Pt 1):279-88. doi: 10.1113/jphysiol.2001.013200.

Abstract

Reorganisation of the motor cortex may occur after limb amputation or spinal cord injury. In humans, transcranial magnetic stimulation (TMS) shows expansion of motor cortical representations of muscles proximal to the injury. Similarly, ischaemic block of the hand can increase acutely the representation of the biceps muscle, measured by increased biceps motor potentials evoked by TMS. It is thought that this increase occurs at the expense of the cortical representation of the paralysed and deafferented hand muscles but this has never been investigated. To study what changes occur in the cortical representation of the hand muscles during ischaemic block, a tungsten microelectrode was inserted into the ulnar or median nerve above the elbow and the size of the neural potential elicited by TMS in fascicles supplying the hand was measured in seven subjects. Prior to ischaemia, TMS evoked EMG responses in the intrinsic hand muscles. In the nerve, a brief motor potential preceded the response in the muscle and was followed by a contraction-induced sensory potential. During 40 min of ischaemia produced by a blood pressure cuff inflated around the forearm to 210 mmHg, the EMG response to TMS and the sensory potential from the hand were progressively blocked. However, the motor neural evoked potential showed a significant increase in amplitude during the ischaemic period (30.5 %, P = 0.005). The increase in the neural potential suggests that output to the hand evoked from the cortex by TMS was not decreased by ischaemic block. Thus, we conclude that the increased response of biceps to TMS during distal ischaemia is not accompanied by a corresponding decrease in the motor cortical representation of the hand.

摘要

肢体截肢或脊髓损伤后,运动皮层可能会发生重组。在人类中,经颅磁刺激(TMS)显示损伤近端肌肉的运动皮层表征会扩大。同样,手部缺血性阻滞可使肱二头肌的表征急性增加,这通过TMS诱发的肱二头肌运动电位增加来衡量。据认为,这种增加是以瘫痪和去传入的手部肌肉的皮层表征为代价发生的,但这从未得到过研究。为了研究缺血性阻滞期间手部肌肉的皮层表征会发生什么变化,将一根钨微电极插入肘部上方的尺神经或正中神经,并在7名受试者中测量了TMS在供应手部的神经束中诱发的神经电位大小。在缺血之前,TMS在手内肌中诱发肌电图反应。在神经中,一个短暂的运动电位先于肌肉中的反应出现,随后是收缩诱发的感觉电位。在前臂周围用血压袖带充气至210 mmHg产生40分钟缺血期间,对TMS的肌电图反应和来自手部的感觉电位逐渐被阻断。然而,运动神经诱发电位在缺血期间幅度显著增加(30.5%,P = 0.005)。神经电位的增加表明,TMS从皮层诱发的对手部的输出并未因缺血性阻滞而减少。因此,我们得出结论,远端缺血期间肱二头肌对TMS的反应增加并未伴随着手部运动皮层表征的相应减少。

相似文献

1
Cortically evoked neural volleys to the human hand are increased during ischaemic block of the forearm.
J Physiol. 2002 Jan 1;538(Pt 1):279-88. doi: 10.1113/jphysiol.2001.013200.
2
Modified ischaemic nerve block of the forearm: use for the induction of cortical plasticity in distal hand muscles.
J Physiol. 2019 Jul;597(13):3457-3471. doi: 10.1113/JP277639. Epub 2019 Jun 6.
3
Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans.
J Physiol. 1998 Sep 15;511 ( Pt 3)(Pt 3):947-56. doi: 10.1111/j.1469-7793.1998.947bg.x.
5
Rapid modulation of human cortical motor outputs following ischaemic nerve block.
Brain. 1993 Jun;116 ( Pt 3):511-25. doi: 10.1093/brain/116.3.511.
6
Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects.
Exp Brain Res. 2002 Nov;147(2):186-92. doi: 10.1007/s00221-002-1237-z. Epub 2002 Sep 20.
7
Modulation of practice-dependent plasticity in human motor cortex.
Brain. 2001 Jun;124(Pt 6):1171-81. doi: 10.1093/brain/124.6.1171.
8
Cortical excitability changes induced by deafferentation of the contralateral hemisphere.
Brain. 2002 Jun;125(Pt 6):1402-13. doi: 10.1093/brain/awf140.
9
Short latency inhibition of human hand motor cortex by somatosensory input from the hand.
J Physiol. 2000 Mar 1;523 Pt 2(Pt 2):503-13. doi: 10.1111/j.1469-7793.2000.t01-1-00503.x.
10
Experimental tonic hand pain modulates the corticospinal plasticity induced by a subsequent hand deafferentation.
Neuroscience. 2016 Aug 25;330:403-9. doi: 10.1016/j.neuroscience.2016.06.008. Epub 2016 Jun 9.

引用本文的文献

1
Acute hypoalgesic and neurophysiological responses to lower-limb ischaemic preconditioning.
Exp Brain Res. 2025 Jan 8;243(1):41. doi: 10.1007/s00221-024-06985-7.
2
Blood flow modulation to improve motor and neurophysiological outcomes in individuals with stroke: a scoping review.
Exp Brain Res. 2024 Dec;242(12):2665-2676. doi: 10.1007/s00221-024-06941-5. Epub 2024 Oct 5.
3
The Prevention of Ischemia-Reperfusion Injury in Elderly Rats after Lower Limb Tourniquet Use.
Antioxidants (Basel). 2022 Sep 28;11(10):1936. doi: 10.3390/antiox11101936.
5
Effect of pain on deafferentation-induced modulation of somatosensory evoked potentials.
PLoS One. 2018 Oct 22;13(10):e0206141. doi: 10.1371/journal.pone.0206141. eCollection 2018.
7
Corticospinal excitability changes following blood flow restriction training of the tibialis anterior: a preliminary study.
Heliyon. 2017 Jan 16;3(1):e00217. doi: 10.1016/j.heliyon.2016.e00217. eCollection 2017 Jan.
8
Perceptual distortion of the tongue by lingual nerve block and topical application of capsaicin in healthy women.
Clin Oral Investig. 2017 Jul;21(6):2045-2052. doi: 10.1007/s00784-016-1994-x. Epub 2016 Nov 9.
9
Remote limb ischemic conditioning enhances motor learning in healthy humans.
J Neurophysiol. 2015 Jun 1;113(10):3708-19. doi: 10.1152/jn.01028.2014. Epub 2015 Apr 1.
10
Motor unit firing pattern, synchrony and coherence in a deafferented patient.
Front Hum Neurosci. 2014 Oct 9;8:746. doi: 10.3389/fnhum.2014.00746. eCollection 2014.

本文引用的文献

1
Changes of cortical excitability in patients with upper limb amputation.
Neurosci Lett. 2000 Oct 27;293(2):143-6. doi: 10.1016/s0304-3940(00)01517-2.
3
Investigation of the functional correlates of reorganization within the human somatosensory cortex.
Brain. 2000 Sep;123 ( Pt 9):1883-95. doi: 10.1093/brain/123.9.1883.
4
Plasticity and primary motor cortex.
Annu Rev Neurosci. 2000;23:393-415. doi: 10.1146/annurev.neuro.23.1.393.
5
Residual function in motor cortex contralateral to amputated hand.
Neurology. 2000 Feb 22;54(4):984-7. doi: 10.1212/wnl.54.4.984.
6
Plasticity of cortical hand muscle representation in patients with hemifacial spasm.
Neurosci Lett. 1999 Sep 3;272(1):33-6. doi: 10.1016/s0304-3940(99)00574-1.
7
Reorganization in primary motor cortex of primates with long-standing therapeutic amputations.
J Neurosci. 1999 Sep 1;19(17):7679-97. doi: 10.1523/JNEUROSCI.19-17-07679.1999.
8
Long-term reorganization of motor cortex outputs after arm amputation.
Neurology. 1999 Jul 13;53(1):106-11. doi: 10.1212/wnl.53.1.106.
9
Multimodal output mapping of human central motor representation on different spatial scales.
J Physiol. 1998 Oct 1;512 ( Pt 1)(Pt 1):163-79. doi: 10.1111/j.1469-7793.1998.163bf.x.
10
Mechanisms of deafferentation-induced plasticity in human motor cortex.
J Neurosci. 1998 Sep 1;18(17):7000-7. doi: 10.1523/JNEUROSCI.18-17-07000.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验