Suppr超能文献

RAD1在酿酒酵母中控制人类HRAS1微卫星的减数分裂扩增。

RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae.

作者信息

Jauert Peter A, Edmiston Sharon N, Conway Kathleen, Kirkpatrick David T

机构信息

Department of Genetics, University of Minnesota, Saint Paul, Minnesota 55108, USA.

出版信息

Mol Cell Biol. 2002 Feb;22(3):953-64. doi: 10.1128/MCB.22.3.953-964.2002.

Abstract

Minisatellite DNA is repetitive DNA with a repeat unit length from 15 to 100 bp. While stable during mitosis, it destabilizes during meiosis, altering both in length and in sequence composition. The basis for this instability is unknown. To investigate the factors controlling minisatellite stability, a minisatellite sequence 3' of the human HRAS1 gene was introduced into the Saccharomyces cerevisiae genome, replacing the wild-type HIS4 promoter. The minisatellite tract exhibited the same phenotypes in yeast that it exhibited in mammalian systems. The insertion stimulated transcription of the HIS4 gene; mRNA production was detected at levels above those seen with the wild-type promoter. The insertion stimulated meiotic recombination and created a hot spot for initiation of double-strand breaks during meiosis in the regions immediately flanking the repetitive DNA. The tract length altered at a high frequency during meiosis, and both expansions and contractions in length were detected. Tract expansion, but not contraction, was controlled by the product of the RAD1 gene. RAD1 is the first gene identified that controls specifically the expansion of minisatellite tracts. A model for tract length alteration based on these results is presented.

摘要

微卫星DNA是一种重复DNA,其重复单元长度为15至100个碱基对。虽然在有丝分裂期间稳定,但在减数分裂期间不稳定,长度和序列组成都会发生改变。这种不稳定性的基础尚不清楚。为了研究控制微卫星稳定性的因素,将人HRAS1基因3'端的一个微卫星序列导入酿酒酵母基因组,取代野生型HIS4启动子。该微卫星序列在酵母中表现出与在哺乳动物系统中相同的表型。该插入刺激了HIS4基因的转录;检测到的mRNA产生水平高于野生型启动子的水平。该插入刺激了减数分裂重组,并在紧邻重复DNA的区域在减数分裂期间为双链断裂的起始创造了一个热点。在减数分裂期间,序列长度高频改变,检测到长度的扩增和收缩。序列扩增而非收缩受RAD1基因产物的控制。RAD1是第一个被鉴定出专门控制微卫星序列扩增的基因。基于这些结果,提出了一个序列长度改变的模型。

相似文献

1
RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae.
Mol Cell Biol. 2002 Feb;22(3):953-64. doi: 10.1128/MCB.22.3.953-964.2002.
2
The role of CSM3, MRC1, and TOF1 in minisatellite stability and large loop DNA repair during meiosis in yeast.
Fungal Genet Biol. 2013 Jan;50:33-43. doi: 10.1016/j.fgb.2012.10.007. Epub 2012 Nov 17.
3
Length and sequence heterozygosity differentially affect HRAS1 minisatellite stability during meiosis in yeast.
Genetics. 2005 Jun;170(2):601-12. doi: 10.1534/genetics.104.026278. Epub 2005 Apr 16.
6
Expansions and contractions in 36-bp minisatellites by gene conversion in yeast.
Genetics. 2001 May;158(1):155-66. doi: 10.1093/genetics/158.1.155.

引用本文的文献

1
A Whole Genome Screen for Minisatellite Stability Genes in Stationary-Phase Yeast Cells.
G3 (Bethesda). 2013 Apr 9;3(4):741-756. doi: 10.1534/g3.112.005397.
2
The role of CSM3, MRC1, and TOF1 in minisatellite stability and large loop DNA repair during meiosis in yeast.
Fungal Genet Biol. 2013 Jan;50:33-43. doi: 10.1016/j.fgb.2012.10.007. Epub 2012 Nov 17.
3
Novel checkpoint pathway organization promotes genome stability in stationary-phase yeast cells.
Mol Cell Biol. 2013 Jan;33(2):457-72. doi: 10.1128/MCB.05831-11. Epub 2012 Nov 12.
5
Multiple pathways regulate minisatellite stability during stationary phase in yeast.
G3 (Bethesda). 2012 Oct;2(10):1185-95. doi: 10.1534/g3.112.003673. Epub 2012 Oct 1.
6
Minisatellite alterations in ZRT1 mutants occur via RAD52-dependent and RAD52-independent mechanisms in quiescent stationary phase yeast cells.
DNA Repair (Amst). 2011 Jun 10;10(6):556-66. doi: 10.1016/j.dnarep.2011.03.002. Epub 2011 Apr 22.
7
The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo.
PLoS Genet. 2009 May;5(5):e1000475. doi: 10.1371/journal.pgen.1000475. Epub 2009 May 8.
8
Comparative genomics and molecular dynamics of DNA repeats in eukaryotes.
Microbiol Mol Biol Rev. 2008 Dec;72(4):686-727. doi: 10.1128/MMBR.00011-08.
9
Zinc regulates the stability of repetitive minisatellite DNA tracts during stationary phase.
Genetics. 2007 Dec;177(4):2469-79. doi: 10.1534/genetics.107.077636.

本文引用的文献

2
Differential timing and control of noncrossover and crossover recombination during meiosis.
Cell. 2001 Jul 13;106(1):47-57. doi: 10.1016/s0092-8674(01)00416-0.
3
Expansions and contractions in 36-bp minisatellites by gene conversion in yeast.
Genetics. 2001 May;158(1):155-66. doi: 10.1093/genetics/158.1.155.
4
Minisatellite variants generated in yeast meiosis involve DNA removal during gene conversion.
Genetics. 2000 Sep;156(1):7-20. doi: 10.1093/genetics/156.1.7.
8
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 1999 Jun;63(2):349-404. doi: 10.1128/MMBR.63.2.349-404.1999.
9
Roles of the DNA mismatch repair and nucleotide excision repair proteins during meiosis.
Cell Mol Life Sci. 1999 Mar;55(3):437-49. doi: 10.1007/s000180050300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验