Suppr超能文献

Serotonin alters multi-segmental convergence patterns in spinal cord deep dorsal horn and intermediate laminae neurons in an in vitro young rat preparation.

作者信息

Shay Barbara L, Hochman Shawn

机构信息

University of Manitoba, Winnipeg, Canada R3E 3J7.

出版信息

Pain. 2002 Jan;95(1-2):7-14. doi: 10.1016/s0304-3959(01)00364-5.

Abstract

Each spinal neuron has a receptive field that corresponds to stimulation of a specific area of skin or subcutaneous tissue. Receptive fields are plastic and can be altered during development and injury but the actions of neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) on receptive field properties are not well known. We used stimulation of multiple adjacent dorsal root spinal segments as a measure of "receptive field size" to determine the effects of 5-HT on multi-segmental convergent input onto neurons in laminae IV-VII. Whole-cell patch-clamp recordings were undertaken in the in vitro hemisected thoracolumbar spinal cord of rats aged 8-10 days old. Based on synaptic responses, neurons could be divided into two predominant groups and 5-HT exerted different effects on these groups. The first group received excitatory post-synaptic potentials (EPSPs) from the homonymous dorsal root but inhibitory post-synaptic potentials (IPSPs) with increasing amplitude from more distant dorsal roots. In this group, 5-HT preferentially depressed the IPSPs from adjacent nerve roots while leaving the EPSP intact. The second group received short-latency EPSPs from all segments stimulated and 5-HT potently depressed all synaptic input. In both populations the depressant actions of 5-HT increased with dose (0.1-10.0 microM). Bicuculline and strychnine did not affect the 5-HT induced short-latency synaptic depression. These results suggest that descending serotonergic systems depress spinal sensory convergence in a graded and differentiated manner. The findings are discussed in relation to the modulation of nociceptive signaling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验