Suppr超能文献

使用潜在类别模型对基因关联和群体分层进行联合建模。

Joint modeling of genetic association and population stratification using latent class models.

作者信息

Ripatti S, Pitkäniemi J, Sillanpää M J

机构信息

Rolf Nevanlinna Institute, P.O. Box 4, FIN-000114, University of Helsinki, Finland.

出版信息

Genet Epidemiol. 2001;21 Suppl 1:S409-14. doi: 10.1002/gepi.2001.21.s1.s409.

Abstract

We show how latent class log-linear models can be used to test for an association between a candidate gene and a disease phenotype in a stratified population when the stratification is unobserved. The stratification may arise because of several ethnic groups or immigration and may lead to spurious associations between several loci and the disease. The information about the stratification is drawn from additional markers that are chosen to be independent of the disease and unlinked to the candidate gene and to each other within each population stratum. We use the EM algorithm to simultaneously estimate all the model parameters, including proportions of individuals in the latent population strata. The latent class model is used to test the phenotype association of single nucleotide polymorphism markers in four candidate regions in population-based case-control data selected from simulated Genetic Analysis Workshop (GAW) 12 population isolate 30. The analysis clearly demonstrates how the number of false positive associations can be reduced when the model accounts for population stratification.

摘要

我们展示了在未观察到分层情况时,潜在类别对数线性模型如何用于检验候选基因与分层人群中疾病表型之间的关联。分层可能由于多个种族群体或移民而产生,并可能导致多个基因座与疾病之间出现虚假关联。关于分层的信息来自额外的标记,这些标记被选择为与疾病无关,在每个群体分层内与候选基因不连锁且相互之间不连锁。我们使用期望最大化(EM)算法同时估计所有模型参数,包括潜在群体分层中个体的比例。潜在类别模型用于检验从模拟的遗传分析研讨会(GAW)12群体隔离群30中选取的基于人群的病例对照数据中四个候选区域内单核苷酸多态性标记的表型关联。分析清楚地表明,当模型考虑人群分层时,如何减少假阳性关联的数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验