Suppr超能文献

大型多民族关联研究中群体分层的校正

Correction of population stratification in large multi-ethnic association studies.

作者信息

Serre David, Montpetit Alexandre, Paré Guillaume, Engert James C, Yusuf Salim, Keavney Bernard, Hudson Thomas J, Anand Sonia

机构信息

Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada.

出版信息

PLoS One. 2008 Jan 2;3(1):e1382. doi: 10.1371/journal.pone.0001382.

Abstract

BACKGROUND

The vast majority of genetic risk factors for complex diseases have, taken individually, a small effect on the end phenotype. Population-based association studies therefore need very large sample sizes to detect significant differences between affected and non-affected individuals. Including thousands of affected individuals in a study requires recruitment in numerous centers, possibly from different geographic regions. Unfortunately such a recruitment strategy is likely to complicate the study design and to generate concerns regarding population stratification.

METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 9,751 individuals representing three main ethnic groups - Europeans, Arabs and South Asians - that had been enrolled from 154 centers involving 52 countries for a global case/control study of acute myocardial infarction. All individuals were genotyped at 103 candidate genes using 1,536 SNPs selected with a tagging strategy that captures most of the genetic diversity in different populations. We show that relying solely on self-reported ethnicity is not sufficient to exclude population stratification and we present additional methods to identify and correct for stratification.

CONCLUSIONS/SIGNIFICANCE: Our results highlight the importance of carefully addressing population stratification and of carefully "cleaning" the sample prior to analyses to obtain stronger signals of association and to avoid spurious results.

摘要

背景

绝大多数复杂疾病的遗传风险因素单独来看,对最终表型的影响较小。因此,基于人群的关联研究需要非常大的样本量,以检测患病个体与未患病个体之间的显著差异。在一项研究中纳入数千名患病个体需要在众多中心进行招募,可能来自不同的地理区域。不幸的是,这样的招募策略可能会使研究设计复杂化,并引发对人群分层的担忧。

方法/主要发现:我们分析了代表三个主要种族群体——欧洲人、阿拉伯人和南亚人——的9751名个体,这些个体来自涉及52个国家的154个中心,参与了一项急性心肌梗死的全球病例对照研究。使用标签策略选择的1536个单核苷酸多态性(SNP)对所有个体的103个候选基因进行基因分型,该策略捕获了不同人群中的大部分遗传多样性。我们表明,仅依靠自我报告的种族不足以排除人群分层,并且我们提出了识别和校正分层的其他方法。

结论/意义:我们的结果强调了在分析之前仔细处理人群分层以及仔细“清理”样本的重要性,以便获得更强的关联信号并避免虚假结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验