Suppr超能文献

评估连续不规则性及其对健康的影响。

Assessing serial irregularity and its implications for health.

作者信息

Pincus S M

出版信息

Ann N Y Acad Sci. 2001 Dec;954:245-67. doi: 10.1111/j.1749-6632.2001.tb02755.x.

Abstract

Approximate entropy (ApEn) is a recently formulated family of parameters and statistics quantifying regularity (orderliness) in serial data, with developments within theoretical mathematics as well as numerous applications to multiple biological contexts. We discuss the motivation for ApEn development, from the study of inappropriate application of dynamical systems (complexity) algorithms to general time-series settings. ApEn is scale invariant and model independent, evaluates both dominant and subordinant patterns in data, and discriminates series for which clear feature recognition is difficult. ApEn is applicable to systems with at least 50 data points and to broad classes of models: it can be applied to discriminate both general classes of correlated stochastic processes, as well as noisy deterministic systems. Moreover, ApEn is complementary to spectral and autocorrelation analyses, providing effective discriminatory capability in instances in which the aforementioned measures exhibit minimal distinctions. Representative ApEn applications to human aging studies, based on both heart rate and endocrinologic (hormonal secretory) time series, are featured. Heart rate (HR) studies include gender- and age-related changes in HR dynamics in older subjects, and analyses of "near-SIDS" infants. Endocrinologic applications establish clear quantitative changes in joint LH-testosterone secretory dynamics in older versus younger men (a "partial male menopause"), via cross-ApEn, a related two-variable asynchrony formulation; a disruption in LH-FSH-NPT (penile tumescence) synchrony in older subjects; and changes in LH-FSH secretory dynamics across menopause. The capability of ApEn to assess relatively subtle disruptions, typically found earlier in the history of a subject than mean and variance changes, holds the potential for enhanced preventative and earlier interventionist strategies.

摘要

近似熵(ApEn)是最近提出的一组用于量化序列数据规律性(有序性)的参数和统计量,在理论数学领域有所发展,并在多种生物学背景下有大量应用。我们讨论了ApEn发展的动机,从动力系统(复杂性)算法在一般时间序列设置中的不当应用研究说起。ApEn具有尺度不变性且与模型无关,能评估数据中的主导模式和从属模式,还能区分难以进行清晰特征识别的序列。ApEn适用于至少有50个数据点的系统和广泛的模型类别:它可用于区分一般类别的相关随机过程以及有噪声的确定性系统。此外,ApEn与频谱分析和自相关分析互补,在上述方法区分度最小的情况下提供有效的辨别能力。文中介绍了基于心率和内分泌(激素分泌)时间序列的ApEn在人类衰老研究中的代表性应用。心率(HR)研究包括老年受试者心率动态中与性别和年龄相关的变化,以及对“近婴儿猝死综合征”婴儿的分析。内分泌学应用通过交叉近似熵(一种相关的双变量异步公式)确定了老年男性与年轻男性联合促黄体生成素 - 睾酮分泌动态中的明显定量变化(“部分男性更年期”);老年受试者促黄体生成素 - 促卵泡激素 - 阴茎勃起(NPT)同步性的破坏;以及绝经前后促黄体生成素 - 促卵泡激素分泌动态的变化。ApEn评估相对细微干扰的能力,通常在受试者病程中比均值和方差变化更早发现,这为加强预防和早期干预策略提供了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验