Renouard T, Fallahpour R-A, Nazeeruddin Md K, Humphry-Baker R, Gorelsky S I, Lever A B P, Grätzel M
Laboratory for Photonics and Interfaces, Institute of Physical Chemistry, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.
Inorg Chem. 2002 Jan 28;41(2):367-78. doi: 10.1021/ic010512u.
Ruthenium sensitizers of the type trans-[Ru(L(1))(X)(2)], trans-[Ru(L(2))(X)(2)], trans-[Ru(L(3))(X)(2)], and trans-[Ru(L(4))(X)(2)] (where L(1) = 6,6'-bis(1-H-benzimidazol-2-yl)-4,4'-bis(methoxycarbonyl)-2,2'-bipyridine, L(2) = 4,4' "-bis(tert-butyl)-4',4' '-bis[p-(methoxycarbonyl)phenyl]-2,2':6',2' ':6' ',2' "-quaterpyridine, L(3) = 4',4' '-bis[3,4-(dimethoxy)phenyl]-2,2':6',2' ':6' ',2' "-quaterpyridine, and L(4) = 4',4' '-diethoxycarbonyl-2,2':6',2' ':6' ',2' "-quaterpyridine; X = Cl(-), NCS(-)) were synthesized and characterized by CV, NMR, and UV-vis absorption and emission spectroscopy. The trans-dichloro and dithiocyanate complexes show MLCT transitions in the entire visible and near-IR region. The lowest energy metal-to-ligand charge-transfer transition band of the trans-dichloro complexes is around 14 300 cm(-1) in DMF solution, and these complexes show weak and broad emission signals with onset at above 10 500 cm(-1). The absorption and emission maxima of the trans-dithiocyanate complexes are blue-shifted compared to those of its trans-dichloro analogues because of the strong pi acceptor property of the NCS(-) compared to the Cl(-). The electronic spectra of trans-[Ru(L)(X)(2)] complexes were calculated by INDO/S and compared with the experimental data. The extent of mixing between metal 4d and ligand pi orbitals is discussed. Extensive pi-back-donation is observed. The panchromatic response of these novel complexes renders them as suitable sensitizers for solar energy conversion applications based on titanium dioxide mesoporous electrodes. Preliminary results using the trans-[Ru(L(4))(NCS)(2)] complex show 75% incident photon-to-current efficiencies (IPCE), yielding 18 mA/cm(2) current density under standard AM 1.5 sunlight.
合成了反式-[Ru(L(1))(X)(2)]、反式-[Ru(L(2))(X)(2)]、反式-[Ru(L(3))(X)(2)]和反式-[Ru(L(4))(X)(2)]类型的钌敏化剂(其中L(1)=6,6'-双(1-H-苯并咪唑-2-基)-4,4'-双(甲氧基羰基)-2,2'-联吡啶,L(2)=4,4'''-双(叔丁基)-4',4''-双[p-(甲氧基羰基)苯基]-2,2':6',2'':6'',2'''-四联吡啶,L(3)=4',4''-双[3,4-(二甲氧基)苯基]-2,2':6',2'':6'',2'''-四联吡啶,L(4)=4',4''-二乙氧基羰基-2,2':6',2'':6'',2'''-四联吡啶;X = Cl(-),NCS(-)),并通过循环伏安法(CV)、核磁共振(NMR)以及紫外-可见吸收和发射光谱对其进行了表征。反式二氯和二硫氰酸酯配合物在整个可见光和近红外区域显示出金属-配体电荷转移(MLCT)跃迁。在N,N-二甲基甲酰胺(DMF)溶液中,反式二氯配合物的最低能量金属-配体电荷转移跃迁带约为14300 cm(-1),并且这些配合物在高于10500 cm(-1)处显示出弱且宽的发射信号。与反式二氯类似物相比,反式二硫氰酸酯配合物的吸收和发射最大值发生了蓝移,这是因为与Cl(-)相比,NCS(-)具有更强的π受体性质。通过间略微分重叠(INDO/S)方法计算了反式-[Ru(L)(X)(2)]配合物的电子光谱,并与实验数据进行了比较。讨论了金属4d和配体π轨道之间的混合程度。观察到了广泛的π反馈键合。这些新型配合物的全色响应使其成为基于二氧化钛介孔电极的太阳能转换应用的合适敏化剂。使用反式-[Ru(L(4))(NCS)(2)]配合物的初步结果显示,入射光子到电流效率(IPCE)为75%,在标准AM 1.5太阳光下产生的电流密度为18 mA/cm(2)。