Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
Inorg Chem. 2010 Aug 2;49(15):6840-52. doi: 10.1021/ic100202h.
The lowest energy metal to ligand charge transfer (MLCT) absorption bands found in ambient solutions of Ru(NH(3))(4)(Y-py)(2) and Ru(L)(2)(bpy)(2) complexes (Y-py a pyridine ligand and (L)(n) a substituted acetonylacetonate, halide, am(m)ine, etc.) consist of two partly resolved absorption envelopes, MLCT(lo) and MLCT(hi). The lower energy absorption envelope, MLCT(lo), in these spectra has the larger amplitude for the bis-(Y-py) complexes, but the smaller amplitude for the bis-bpy the complexes. Time-dependent density functional theory (TD-DFT) approaches have been used to model 14 bis-bpy, three bis-(Y-py), and three mono-bpy complexes. The modeling indicates that the lowest unoccupied molecular orbital (LUMO) of each bis-(Y-py) complex corresponds to the antisymmetric combination of individual Y-py acceptor orbitals and that the transition involving the highest occupied molecular orbital (HOMO) and LUMO (HOMO-->LUMO) is the dominant contribution to MLCT(lo) in this class of complexes. The LUMO of each bis-bpy complex that contains a C(2) symmetry axis also corresponds largely to the antisymmetric combination of individual ligand acceptor orbitals, while the LUMOs are more complex when there is no C(2) axis; furthermore, the energy difference between the HOMO-->LUMO and HOMO-->LUMO+1 transitions is too small (<1000 cm(-1)) to resolve in the spectra of the bis-bpy complexes in ambient solutions. Relatively weak MLCT(lo) absorption contributions are found for all of the Ru(L)(2)(bpy)(2) complexes examined, but they are experimentally best defined in the spectra of the (L)(2) = X-acac complexes. TD-DFT modeling of the HOMO-->LUMO transition of Ru(L)(4)bpy complexes indicates that it is too weak to be detected and occurs at significantly lower energy (about 3000-5000 cm(-1)) than the observed MLCT absorptions. Since the chemical properties of MLCT excited states are generally correlated with the HOMO and/or LUMO properties of the complexes, such very weak HOMO-->LUMO transitions can complicate the use of spectroscopic information in their assessment. As an example, it is observed that the correlation lines between the absorption energy maxima and the differences in ground state oxidation and reduction potentials (DeltaE(1/2)) have much smaller slopes for the bis-bpy than the mono-bpy complexes. However, the observed MLCT(lo) and the calculated HOMO-->LUMO transitions of bis-bpy complexes correlate very similarly with DeltaE(1/2) and this indicates that it is the low energy and small amplitude component of the lowest energy MLCT absorption band that is most appropriately correlated with excited state chemistry, not the absorption maximum as is often assumed.
在环境溶液中发现的 Ru(NH(3))(4)(Y-py)(2) 和 Ru(L)(2)(bpy)(2) 配合物的最低能量金属到配体电荷转移 (MLCT) 吸收带由两个部分分辨的吸收包络组成,MLCT(lo) 和 MLCT(hi)。对于双-(Y-py) 配合物,这些光谱中较低能量的吸收包络 MLCT(lo) 的幅度较大,但双-bpy 配合物的幅度较小。已使用时变密度泛函理论 (TD-DFT) 方法来模拟 14 个双-bpy、3 个双-(Y-py) 和 3 个单-bpy 配合物。建模表明,每个双-(Y-py) 配合物的最低未占据分子轨道 (LUMO) 对应于单个 Y-py 受体轨道的反对称组合,并且涉及最高占据分子轨道 (HOMO) 和 LUMO 的跃迁 (HOMO-->LUMO) 是此类配合物中 MLCT(lo) 的主要贡献。每个含有 C(2) 对称轴的双-bpy 配合物的 LUMO 也主要对应于单个配体受体轨道的反对称组合,而当没有 C(2) 轴时,LUMO 更为复杂;此外,HOMO-->LUMO 和 HOMO-->LUMO+1 跃迁之间的能量差太小(<1000 cm(-1)) 以至于在环境溶液中双-bpy 配合物的光谱中无法分辨。对于所有检查的 Ru(L)(2)(bpy)(2) 配合物,都发现相对较弱的 MLCT(lo) 吸收贡献,但在 (L)(2) = X-acac 配合物的光谱中实验上定义得最好。Ru(L)(4)bpy 配合物 HOMO-->LUMO 跃迁的 TD-DFT 建模表明,它太弱以至于无法检测到,并且发生在明显更低的能量(约 3000-5000 cm(-1)) 比观察到的 MLCT 吸收。由于 MLCT 激发态的化学性质通常与配合物的 HOMO 和/或 LUMO 性质相关,因此如此弱的 HOMO-->LUMO 跃迁可能会使它们在评估中使用光谱信息变得复杂。例如,观察到对于双-bpy 配合物,吸收能最大值与基态氧化还原电位 (DeltaE(1/2)) 之间的差异之间的相关线的斜率比单-bpy 配合物小得多。然而,观察到的 MLCT(lo) 和计算的双-bpy 配合物的 HOMO-->LUMO 跃迁与 DeltaE(1/2) 非常相似相关,这表明与激发态化学最相关的是最低能量 MLCT 吸收带的低能量和小幅度组成部分,而不是通常假设的吸收最大值。