Suppr超能文献

具有随机化学成分的系统的贝叶斯分析:狄利克雷分布的重整化群方法与稀释统计理论

Bayesian analysis of systems with random chemical composition: renormalization-group approach to Dirichlet distributions and the statistical theory of dilution.

作者信息

Vlad Marcel Ovidiu, Tsuchiya Masa, Oefner Peter, Ross John

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 1):011112. doi: 10.1103/PhysRevE.65.011112. Epub 2001 Dec 20.

Abstract

We investigate the statistical properties of systems with random chemical composition and try to obtain a theoretical derivation of the self-similar Dirichlet distribution, which is used empirically in molecular biology, environmental chemistry, and geochemistry. We consider a system made up of many chemical species and assume that the statistical distribution of the abundance of each chemical species in the system is the result of a succession of a variable number of random dilution events, which can be described by using the renormalization-group theory. A Bayesian approach is used for evaluating the probability density of the chemical composition of the system in terms of the probability densities of the abundances of the different chemical species. We show that for large cascades of dilution events, the probability density of the composition vector of the system is given by a self-similar probability density of the Dirichlet type. We also give an alternative formal derivation for the Dirichlet law based on the maximum entropy approach, by assuming that the average values of the chemical potentials of different species, expressed in terms of molar fractions, are constant. Although the maximum entropy approach leads formally to the Dirichlet distribution, it does not clarify the physical origin of the Dirichlet statistics and has serious limitations. The random theory of dilution provides a physical picture for the emergence of Dirichlet statistics and makes it possible to investigate its validity range. We discuss the implications of our theory in molecular biology, geochemistry, and environmental science.

摘要

我们研究具有随机化学成分的系统的统计特性,并试图获得自相似狄利克雷分布的理论推导,该分布在分子生物学、环境化学和地球化学中被经验性地使用。我们考虑一个由许多化学物种组成的系统,并假设系统中每个化学物种丰度的统计分布是一系列数量可变的随机稀释事件的结果,这可以用重整化群理论来描述。我们使用贝叶斯方法,根据不同化学物种丰度的概率密度来评估系统化学成分的概率密度。我们表明,对于大量的稀释事件级联,系统组成向量的概率密度由狄利克雷类型的自相似概率密度给出。我们还基于最大熵方法给出了狄利克雷定律的另一种形式推导,假设以摩尔分数表示的不同物种化学势的平均值是恒定的。尽管最大熵方法形式上导致了狄利克雷分布,但它没有阐明狄利克雷统计的物理起源,并且有严重的局限性。随机稀释理论为狄利克雷统计的出现提供了一个物理图景,并使得研究其有效性范围成为可能。我们讨论了我们的理论在分子生物学、地球化学和环境科学中的意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验