Park Su-Chan, Kim Doochul, Park Jeong-Man
School of Physics, Seoul National University, Seoul 151-747, Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 2):015102. doi: 10.1103/PhysRevE.65.015102. Epub 2001 Dec 14.
We present a formalism to derive the stochastic differential equations (SDEs) for several solid-on-solid growth models. Our formalism begins with a mapping of the microscopic dynamics of growth models onto the particle systems with reactions and diffusion. We then write the master equations for these corresponding particle systems and find the SDEs for the particle densities. Finally, by connecting the particle densities with the growth heights, we derive the SDEs for the height variables. Applying this formalism to discrete growth models, we find the Edwards-Wilkinson equation for the symmetric body-centered solid-on-solid (BCSOS) model, the Kardar-Parisi-Zhang equation for the asymmetric BCSOS model and the generalized restricted solid-on-solid (RSOS) model, and the Villain-Lai-Das Sarma equation for the conserved RSOS model. In addition to the consistent forms of equations for growth models, we also obtain the coefficients associated with the SDEs.
我们提出一种形式主义方法,用于推导几种固-固生长模型的随机微分方程(SDE)。我们的形式主义方法始于将生长模型的微观动力学映射到具有反应和扩散的粒子系统上。然后,我们为这些相应的粒子系统写出主方程,并找到粒子密度的随机微分方程。最后,通过将粒子密度与生长高度联系起来,我们推导出高度变量的随机微分方程。将这种形式主义方法应用于离散生长模型,我们得到了对称体心固-固(BCSOS)模型的爱德华兹-威尔金森方程、非对称BCSOS模型和广义受限固-固(RSOS)模型的卡达尔-帕里西-张方程,以及守恒RSOS模型的维兰-赖-达斯·萨尔马方程。除了生长模型方程的一致形式外,我们还得到了与随机微分方程相关的系数。