Prokof'ev N, Ruebenacker O, Svistunov B
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA.
Phys Rev Lett. 2001 Dec 31;87(27 Pt 1):270402. doi: 10.1103/PhysRevLett.87.270402. Epub 2001 Dec 11.
We study the Berezinskii-Kosterlitz-Thouless transition in a weakly interacting 2D quantum Bose gas using the concept of universality and numerical simulations of the classical absolute value psi(4) model on a lattice. The critical density and chemical potential are given by relations n(c) = (mT/2piPlanck's(2))ln(xiPlanck's(2)/mU) and mu(c) = (mTU/piPlanck's(2))ln(xi(mu)Planck's(2)/mU), where T is the temperature, m is the mass, and U is the effective interaction. The dimensionless constant xi = 380+/-3 is very large and thus any quantitative analysis of the experimental data crucially depends on its value. For xi(mu) our result is xi(mu) = 13.2+/-0.4. We also report the study of the quasicondensate correlations at the critical point.
我们使用普适性概念以及晶格上经典绝对值ψ⁴模型的数值模拟,研究弱相互作用二维量子玻色气体中的贝雷津斯基 - 科斯特利茨 - Thouless 转变。临界密度和化学势由关系式(n_c = (\frac{mT}{2\pi\hbar^2})\ln(\frac{\xi\hbar^2}{mU}))和(\mu_c = (\frac{mTU}{\pi\hbar^2})\ln(\frac{\xi_{\mu}\hbar^2}{mU}))给出,其中(T)是温度,(m)是质量,(U)是有效相互作用。无量纲常数(\xi = 380\pm3)非常大,因此对实验数据的任何定量分析都关键取决于其值。对于(\xi_{\mu}),我们的结果是(\xi_{\mu} = 13.2\pm0.4)。我们还报告了临界点处准凝聚关联的研究。