Boudjemâa Abdelâali
Department of Physics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, P.O. Box 78, 02000, Ouled-Fares, Chlef, Algeria.
Laboratory of Mechanics and Energy, Hassiba Benbouali University of Chlef, P.O. Box 78, 02000, Ouled-Fares, Chlef, Algeria.
Sci Rep. 2021 Nov 5;11(1):21765. doi: 10.1038/s41598-021-01089-6.
We study the equilibrium properties of self-bound droplets in two-dimensional Bose mixtures employing the time-dependent Hartree-Fock-Bogoliubov theory. This theory allows one to understand both the many-body and temperature effects beyond the Lee-Huang-Yang description. We calculate higher-order corrections to the excitations, the sound velocity, and the energy of the droplet. Our results for the ground-state energy are compared with the diffusion Monte Carlo data and good agreement is found. The behavior of the depletion and anomalous density of the droplet is also discussed. At finite temperature, we show that the droplet emerges at temperatures well below the Berezinskii-Kosterlitz-Thouless transition temperature. The critical temperature strongly depends on the interspecies interactions. Our study is extended to the finite size droplet by numerically solving the generalized finite-temperature Gross-Pitaevskii equation which is obtained self-consistently from our formalism in the framework of the local density approximation.
我们采用含时哈特里-福克-博戈留波夫理论研究二维玻色混合物中自束缚液滴的平衡性质。该理论能让人理解超越李-黄-杨描述的多体效应和温度效应。我们计算了对激发、声速和液滴能量的高阶修正。我们将基态能量的结果与扩散蒙特卡罗数据进行了比较,发现吻合良好。还讨论了液滴的耗尽和反常密度的行为。在有限温度下,我们表明液滴在远低于贝雷津斯基-科斯特利茨- Thouless 转变温度的温度下出现。临界温度强烈依赖于种间相互作用。我们通过数值求解广义有限温度格罗斯-皮塔耶夫斯基方程将研究扩展到有限尺寸液滴,该方程是在局域密度近似框架下从我们的形式体系自洽得到的。