Jackson Bradley E, McInerney Michael J
Department of Botany and Microbiology, University of Oklahoma, Norman 73019-2045, USA.
Nature. 2002 Jan 24;415(6870):454-6. doi: 10.1038/415454a.
Many fermentative bacteria obtain energy for growth by reactions in which the change in free energy (DeltaG') is less than that needed to synthesize ATP. These bacteria couple substrate metabolism directly to ATP synthesis, however, by classical phosphoryl transfer reactions. An explanation for the energy economy of these organisms is that biological systems conserve energy in discrete amounts, with a minimum, biochemically convertible energy value of about -20 kJ mol-1 (refs 1, 2, 3). This concept predicts that anaerobic substrate decay ceases before the minimum free energy value is reached, and several studies support this prediction. Here we show that metabolism by syntrophic associations, in which the degradation of a substrate by one species is thermodynamically possible only through removal of the end product by another species, can occur at values close to thermodynamic equilibrium (DeltaG' approximately 0 kJ mol-1). The free energy remaining when substrate metabolism halts is not constant; it depends on the terminal electron-accepting reaction and the amount of energy required for substrate activation. Syntrophic associations metabolize near thermodynamic equilibrium, indicating that bacteria operate extremely efficient catabolic systems.
许多发酵细菌通过自由能变化(ΔG')小于合成ATP所需自由能变化的反应来获取生长所需的能量。然而,这些细菌通过经典的磷酸转移反应将底物代谢直接与ATP合成相偶联。对这些生物体能量经济性的一种解释是,生物系统以离散量储存能量,生物化学可转化的最小能量值约为-20 kJ mol-1(参考文献1、2、3)。这一概念预测,在达到最小自由能值之前,厌氧底物分解就会停止,多项研究支持了这一预测。在此我们表明,在互营共生关系中,一种物种对底物的降解只有在另一种物种去除终产物的情况下在热力学上才是可能的,这种代谢可以在接近热力学平衡(ΔG'约为0 kJ mol-1)的情况下发生。底物代谢停止时剩余的自由能并不恒定;它取决于终端电子接受反应以及底物活化所需的能量量。互营共生关系在接近热力学平衡时进行代谢,这表明细菌运行着极其高效的分解代谢系统。