Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo 060-8628, Hokkaido, Japan.
Cell. 2024 Nov 27;187(24):6882-6895.e8. doi: 10.1016/j.cell.2024.09.042. Epub 2024 Oct 23.
Mechanistic studies of life's lower metabolic limits have been limited due to a paucity of tractable experimental systems. Here, we show that redox-cycling of phenazine-1-carboxamide (PCN) by Pseudomonas aeruginosa supports cellular maintenance in the absence of growth with a low mass-specific metabolic rate of 8.7 × 10 W (g C) at 25°C. Leveraging a high-throughput electrochemical culturing device, we find that non-growing cells cycling PCN tolerate conventional antibiotics but are susceptible to those that target membrane components. Under these conditions, cells conserve energy via a noncanonical, facilitated fermentation that is dependent on acetate kinase and NADH dehydrogenases. Across PCN concentrations that limit cell survival, the cell-specific metabolic rate is constant, indicating the cells are operating near their bioenergetic limit. This quantitative platform opens the door to further mechanistic investigations of maintenance, a physiological state that underpins microbial survival in nature and disease.
由于缺乏易于处理的实验系统,对生命较低代谢极限的机制研究一直受到限制。在这里,我们表明,铜绿假单胞菌对吩嗪-1-羧酰胺(PCN)的氧化还原循环支持细胞在没有生长的情况下维持,其低比代谢率为 8.7×10 W(g C),在 25°C 下。利用高通量电化学培养装置,我们发现循环 PCN 的非生长细胞可以耐受常规抗生素,但易受针对膜成分的抗生素影响。在这些条件下,细胞通过依赖于乙酸激酶和 NADH 脱氢酶的非典型促进发酵来保存能量。在限制细胞存活的 PCN 浓度范围内,细胞特异性代谢率保持不变,表明细胞在接近其生物能量极限的情况下运行。这个定量平台为进一步研究维持机制打开了大门,维持是一种生理状态,为微生物在自然界和疾病中的生存提供了基础。