Suppr超能文献

表面几何结构与形态发生素的相互作用。

The interaction of surface geometry with morphogens.

作者信息

Cummings F W

机构信息

Physics Department, University of California, Riverside 92521, USA.

出版信息

J Theor Biol. 2001 Oct 7;212(3):303-13. doi: 10.1006/jtbi.2001.2377.

Abstract

Expressions are given for the Gauss and Mean curvatures of a surface of thickness h. The two curvatures, (K and H), which are given at each point of the middle surface, are adequate to describe the surface. The sheet thickness varies with position in the middle surface bisecting the apical and basal surfaces. The definitions of K and H are in terms of radii of curvature, but such radii are not appropriate variables for determining how morphogens in the surface may couple to the geometry. More suitable expressions are developed here. Two important geometrical constraints must be satisfied, namely the famous Gauss-Bonnet theorem, and an inequality stemming from the definition of the two curvatures. It is argued that these constraints are of great usefulness in determining the form of the coupling of morphogens to the geometry. In particular, when two key morphogens suffice to determine surface geometry, explicit expressions are suggested to determine both Gauss (K) and Mean (H) curvatures as functions of invariant morphogen densities.

摘要

给出了厚度为h的曲面的高斯曲率和平均曲率的表达式。在中面上的每个点给出的两个曲率(K和H)足以描述该曲面。片层厚度随平分顶端和基部表面的中面上的位置而变化。K和H的定义是根据曲率半径给出的,但这样的半径不是确定表面中的形态发生素如何与几何形状耦合的合适变量。这里开发了更合适的表达式。必须满足两个重要的几何约束,即著名的高斯 - 博内定理,以及源于两个曲率定义的不等式。有人认为,这些约束在确定形态发生素与几何形状的耦合形式方面非常有用。特别是,当两个关键的形态发生素足以确定表面几何形状时,建议给出明确的表达式来确定高斯曲率(K)和平均曲率(H)作为不变形态发生素密度的函数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验