Suppr超能文献

量化地声反演中的不确定性。I. 一种快速吉布斯采样器方法。

Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach.

作者信息

Dosso Stan E

机构信息

School of Earth and Ocean Sciences, University of Victoria, British Columbia, Canada.

出版信息

J Acoust Soc Am. 2002 Jan;111(1 Pt 1):129-42. doi: 10.1121/1.1419086.

Abstract

This paper develops a new approach to estimating seabed geoacoustic properties and their uncertainties based on a Bayesian formulation of matched-field inversion. In Bayesian inversion, the solution is characterized by its posterior probability density (PPD), which combines prior information about the model with information from an observed data set. To interpret the multi-dimensional PPD requires calculation of its moments, such as the mean, covariance, and marginal distributions, which provide parameter estimates and uncertainties. Computation of these moments involves estimating multi-dimensional integrals of the PPD, which is typically carried out using a sampling procedure. Important goals for an effective Bayesian algorithm are to obtain efficient, unbiased sampling of these moments, and to verify convergence of the sample. This is accomplished here using a Gibbs sampler (GS) approach based on the Metropolis algorithm, which also forms the basis for simulated annealing (SA). Although GS can be computationally slow in its basic form, just as modifications to SA have produced much faster optimization algorithms, the GS is modified here to produce an efficient algorithm referred to as the fast Gibbs sampler (FGS). An automated convergence criterion is employed based on monitoring the difference between two independent FGS samples collected in parallel. Comparison of FGS, GS, and Monte Carlo integration for noisy synthetic benchmark test cases indicates that FGS provides rigorous estimates of PPD moments while requiring orders of magnitude less computation time.

摘要

本文基于匹配场反演的贝叶斯公式,开发了一种估计海底地球声学特性及其不确定性的新方法。在贝叶斯反演中,解由其后验概率密度(PPD)表征,它将关于模型的先验信息与来自观测数据集的信息相结合。要解释多维PPD需要计算其矩,如均值、协方差和边际分布,这些矩提供了参数估计和不确定性。这些矩的计算涉及估计PPD的多维积分,通常使用采样程序来进行。有效贝叶斯算法的重要目标是获得这些矩的高效、无偏采样,并验证样本的收敛性。这里使用基于Metropolis算法的吉布斯采样器(GS)方法来实现这一点,该算法也是模拟退火(SA)的基础。尽管GS的基本形式在计算上可能较慢,就像对SA的改进产生了更快的优化算法一样,这里对GS进行了修改,以产生一种称为快速吉布斯采样器(FGS)的高效算法。基于监测并行收集的两个独立FGS样本之间的差异,采用了一种自动收敛准则。对有噪声的合成基准测试案例进行的FGS、GS和蒙特卡罗积分的比较表明,FGS在需要的计算时间少几个数量级的情况下,能提供PPD矩的严格估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验