Suppr超能文献

利用微卫星标记估计种群分化

The estimation of population differentiation with microsatellite markers.

作者信息

Balloux François, Lugon-Moulin Nicolas

机构信息

Zoologisches Institut, Universität Bern, CH-3032 Hinterkappelen-Bern, Switzerland.

出版信息

Mol Ecol. 2002 Feb;11(2):155-65. doi: 10.1046/j.0962-1083.2001.01436.x.

Abstract

Microsatellite markers are routinely used to investigate the genetic structuring of natural populations. The knowledge of how genetic variation is partitioned among populations may have important implications not only in evolutionary biology and ecology, but also in conservation biology. Hence, reliable estimates of population differentiation are crucial to understand the connectivity among populations and represent important tools to develop conservation strategies. The estimation of differentiation is c from Wright's FST and/or Slatkin's RST, an FST -analogue assuming a stepwise mutation model. Both these statistics have their drawbacks. Furthermore, there is no clear consensus over their relative accuracy. In this review, we first discuss the consequences of different temporal and spatial sampling strategies on differentiation estimation. Then, we move to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci. Finally, we discuss the biological interpretation of population structuring estimates.

摘要

微卫星标记常用于研究自然种群的遗传结构。了解遗传变异如何在种群间分配不仅在进化生物学和生态学中有重要意义,在保护生物学中也同样重要。因此,可靠的种群分化估计对于理解种群间的连通性至关重要,并且是制定保护策略的重要工具。分化的估计是基于赖特的FST和/或斯莱特金的RST,RST是一种假设逐步突变模型的FST类似物。这两种统计方法都有其缺点。此外,对于它们的相对准确性也没有明确的共识。在这篇综述中,我们首先讨论不同时间和空间采样策略对分化估计的影响。然后,我们转向与种群结构估计本身直接相关的统计问题,特别强调微卫星位点高突变率和突变模式的影响。最后,我们讨论种群结构估计的生物学解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验