Suppr超能文献

用于识别X射线晶体学电子密度图中二级结构的模式识别方法。

Pattern-recognition methods to identify secondary structure within X-ray crystallographic electron-density maps.

作者信息

Oldfield Thomas

机构信息

Accelrys Inc., Department of Chemistry, University of York, Heslington, York YO10 5DD, England.

出版信息

Acta Crystallogr D Biol Crystallogr. 2002 Mar;58(Pt 3):487-93. doi: 10.1107/s0907444902000525. Epub 2002 Feb 21.

Abstract

The interpretation of macromolecular crystallographic electron-density maps is a difficult and traditionally a manual step in the determination of a protein structure. The visualization of information within an electron-density map can be extremely arduous owing to the amount and complexity of information present. The ability to see the overall fold and structure of the molecule is usually lost among all the detail, particularly with larger structures. This paper describes a novel method of analysis of electron density in real space that can determine the secondary structure of a protein within minutes without any user intervention. The method is able to work with poor data as well as good data at resolutions down to 3.5A and is integral to the functionality of QUANTA. This article describes the methodology of the pattern recognition and its use with a number of sets of experimental data.

摘要

大分子晶体学电子密度图的解读是蛋白质结构测定中一个困难且传统上需手动完成的步骤。由于电子密度图中存在的信息量和复杂性,可视化其中的信息可能极其艰巨。在所有细节中,通常会丢失查看分子整体折叠和结构的能力,对于较大的结构尤其如此。本文描述了一种在实空间中分析电子密度的新方法,该方法无需任何用户干预,就能在几分钟内确定蛋白质的二级结构。该方法能够处理分辨率低至3.5埃的质量较差以及质量较好的数据,并且是QUANTA功能不可或缺的一部分。本文描述了模式识别方法及其在多组实验数据中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验