Suppr超能文献

小心q2!

Beware of q2!

作者信息

Golbraikh Alexander, Tropsha Alexander

机构信息

Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, 27599, USA.

出版信息

J Mol Graph Model. 2002 Jan;20(4):269-76. doi: 10.1016/s1093-3263(01)00123-1.

Abstract

Validation is a crucial aspect of any quantitative structure-activity relationship (QSAR) modeling. This paper examines one of the most popular validation criteria, leave-one-out cross-validated R2 (LOO q2). Often, a high value of this statistical characteristic (q2 > 0.5) is considered as a proof of the high predictive ability of the model. In this paper, we show that this assumption is generally incorrect. In the case of 3D QSAR, the lack of the correlation between the high LOO q2 and the high predictive ability of a QSAR model has been established earlier [Pharm. Acta Helv. 70 (1995) 149; J. Chemomet. 10(1996)95; J. Med. Chem. 41 (1998) 2553]. In this paper, we use two-dimensional (2D) molecular descriptors and k nearest neighbors (kNN) QSAR method for the analysis of several datasets. No correlation between the values of q2 for the training set and predictive ability for the test set was found for any of the datasets. Thus, the high value of LOO q2 appears to be the necessary but not the sufficient condition for the model to have a high predictive power. We argue that this is the general property of QSAR models developed using LOO cross-validation. We emphasize that the external validation is the only way to establish a reliable QSAR model. We formulate a set of criteria for evaluation of predictive ability of QSAR models.

摘要

验证是任何定量构效关系(QSAR)建模的关键方面。本文研究了最流行的验证标准之一,留一法交叉验证R2(LOO q2)。通常,这一统计特征的高值(q2 > 0.5)被视为模型具有高预测能力的证明。在本文中,我们表明这一假设通常是不正确的。在三维QSAR的情况下,高LOO q2与QSAR模型的高预测能力之间缺乏相关性这一点早已得到证实[《药学学报》瑞士版70 (1995) 149;《化学计量学杂志》10(1996)95;《药物化学杂志》41 (1998) 2553]。在本文中,我们使用二维(2D)分子描述符和k最近邻(kNN)QSAR方法来分析几个数据集。对于任何一个数据集,训练集的q2值与测试集的预测能力之间均未发现相关性。因此,高LOO q2值似乎是模型具有高预测能力的必要但不充分条件。我们认为这是使用留一法交叉验证开发的QSAR模型的普遍特性。我们强调外部验证是建立可靠QSAR模型的唯一途径。我们制定了一套评估QSAR模型预测能力的标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验