Golbraikh Alexander, Shen Min, Xiao Zhiyan, Xiao Yun-De, Lee Kuo-Hsiung, Tropsha Alexander
Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA.
J Comput Aided Mol Des. 2003 Feb-Apr;17(2-4):241-53. doi: 10.1023/a:1025386326946.
Quantitative Structure-Activity Relationship (QSAR) models are used increasingly to screen chemical databases and/or virtual chemical libraries for potentially bioactive molecules. These developments emphasize the importance of rigorous model validation to ensure that the models have acceptable predictive power. Using k nearest neighbors (kNN) variable selection QSAR method for the analysis of several datasets, we have demonstrated recently that the widely accepted leave-one-out (LOO) cross-validated R2 (q2) is an inadequate characteristic to assess the predictive ability of the models [Golbraikh, A., Tropsha, A. Beware of q2! J. Mol. Graphics Mod. 20, 269-276, (2002)]. Herein, we provide additional evidence that there exists no correlation between the values of q2 for the training set and accuracy of prediction (R2) for the test set and argue that this observation is a general property of any QSAR model developed with LOO cross-validation. We suggest that external validation using rationally selected training and test sets provides a means to establish a reliable QSAR model. We propose several approaches to the division of experimental datasets into training and test sets and apply them in QSAR studies of 48 functionalized amino acid anticonvulsants and a series of 157 epipodophyllotoxin derivatives with antitumor activity. We formulate a set of general criteria for the evaluation of predictive power of QSAR models.
定量构效关系(QSAR)模型越来越多地用于筛选化学数据库和/或虚拟化学库以寻找潜在的生物活性分子。这些进展强调了严格模型验证的重要性,以确保模型具有可接受的预测能力。我们最近使用k最近邻(kNN)变量选择QSAR方法分析了几个数据集,结果表明广泛接受的留一法(LOO)交叉验证的R2(q2)并不是评估模型预测能力的充分特征[戈尔布赖赫,A.,特罗普沙,A. 谨防q2!《分子图形与建模杂志》20,269 - 276,(2002)]。在此,我们提供了额外的证据,即训练集的q2值与测试集的预测准确性(R2)之间不存在相关性,并认为这一观察结果是任何采用留一法交叉验证开发的QSAR模型的普遍特性。我们建议使用合理选择的训练集和测试集进行外部验证,这是建立可靠QSAR模型的一种方法。我们提出了几种将实验数据集划分为训练集和测试集的方法,并将其应用于48种功能化氨基酸抗惊厥药和一系列157种具有抗肿瘤活性的表鬼臼毒素衍生物的QSAR研究中。我们制定了一套评估QSAR模型预测能力的通用标准。