Suppr超能文献

光合细菌球形红杆菌DSM158中nap基因表达及周质硝酸还原酶活性的调控

Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158.

作者信息

Gavira Mónica, Roldán M Dolores, Castillo Francisco, Moreno-Vivián Conrado

机构信息

Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Campus Universitario de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.

出版信息

J Bacteriol. 2002 Mar;184(6):1693-702. doi: 10.1128/JB.184.6.1693-1702.2002.

Abstract

Bacterial periplasmic nitrate reductases (Nap) can play different physiological roles and are expressed under different conditions depending on the organism. Rhodobacter sphaeroides DSM158 has a Nap system, encoded by the napKEFDABC gene cluster, but nitrite formed is not further reduced because this strain lacks nitrite reductase. Nap activity increases in the presence of nitrate and oxygen but is unaffected by ammonium. Reverse transcription-PCR and Northern blots demonstrated that the napKEFDABC genes constitute an operon transcribed as a single 5.5-kb product. Northern blots and nap-lacZ fusions revealed that nap expression is threefold higher under aerobic conditions but is regulated by neither nitrate nor ammonium, although it is weakly induced by nitrite. On the other hand, nitrate but not nitrite causes a rapid enzyme activation, explaining the higher Nap activity found in nitrate-grown cells. Translational nap'-'lacZ fusions reveal that the napK and napD genes are not efficiently translated, probably due to mRNA secondary structures occluding the translation initiation sites of these genes. Neither butyrate nor caproate increases nap expression, although cells growing phototrophically on these reduced substrates show a very high Nap activity in vivo (nitrite accumulation is sevenfold higher than in medium with malate). Phototrophic growth on butyrate or caproate medium is severely reduced in the NapA(-) mutants. Taken together, these results indicate that nitrate reduction in R. sphaeroides is mainly regulated at the level of enzyme activity by both nitrate and electron supply and confirm that the Nap system is involved in redox balancing using nitrate as an ancillary oxidant to dissipate excess reductant.

摘要

细菌周质硝酸还原酶(Nap)可发挥不同的生理作用,并且根据生物体的不同,在不同条件下表达。球形红细菌DSM158具有由napKEFDABC基因簇编码的Nap系统,但由于该菌株缺乏亚硝酸还原酶,形成的亚硝酸盐不会进一步还原。在硝酸盐和氧气存在的情况下,Nap活性增加,但不受铵的影响。逆转录PCR和Northern印迹表明,napKEFDABC基因构成一个操纵子,转录为单一的5.5 kb产物。Northern印迹和nap-lacZ融合表明,nap表达在有氧条件下高3倍,但不受硝酸盐或铵的调节,尽管它受到亚硝酸盐的弱诱导。另一方面,硝酸盐而非亚硝酸盐会导致酶快速激活,这解释了在硝酸盐培养的细胞中发现的较高Nap活性。翻译型nap'-'lacZ融合表明,napK和napD基因翻译效率不高,可能是由于mRNA二级结构遮挡了这些基因的翻译起始位点。丁酸盐和己酸盐均不会增加nap表达,尽管在这些还原底物上进行光合生长的细胞在体内显示出非常高的Nap活性(亚硝酸盐积累比在苹果酸培养基中高7倍)。在NapA(-)突变体中,丁酸盐或己酸盐培养基上的光合生长严重降低。综上所述,这些结果表明,球形红细菌中的硝酸盐还原主要在酶活性水平上受硝酸盐和电子供应的调节,并证实Nap系统参与利用硝酸盐作为辅助氧化剂来消耗过量还原剂的氧化还原平衡。

相似文献

6
Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025).
J Bacteriol. 2011 Dec;193(23):6483-9. doi: 10.1128/JB.05324-11. Epub 2011 Sep 23.
7
NapF is a cytoplasmic iron-sulfur protein required for Fe-S cluster assembly in the periplasmic nitrate reductase.
J Biol Chem. 2004 Nov 26;279(48):49727-35. doi: 10.1074/jbc.M406502200. Epub 2004 Sep 15.
8
Nitrate reductase from Rhodopseudomonas sphaeroides.
J Bacteriol. 1982 Jun;150(3):1091-7. doi: 10.1128/jb.150.3.1091-1097.1982.
9
Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12.
J Bacteriol. 2002 Mar;184(5):1314-23. doi: 10.1128/JB.184.5.1314-1323.2002.
10
The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification.
J Bacteriol. 1999 May;181(9):2802-6. doi: 10.1128/JB.181.9.2802-2806.1999.

引用本文的文献

1
Endosymbiont genomes yield clues of tubeworm success.
ISME J. 2018 Nov;12(11):2785-2795. doi: 10.1038/s41396-018-0220-z. Epub 2018 Jul 18.
2
Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms.
J Bacteriol. 2018 Apr 9;200(9). doi: 10.1128/JB.00031-18. Print 2018 May 1.
4
Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34melT.
Appl Environ Microbiol. 2015 Aug;81(15):5235-48. doi: 10.1128/AEM.00903-15. Epub 2015 May 29.
5
The mononuclear molybdenum enzymes.
Chem Rev. 2014 Apr 9;114(7):3963-4038. doi: 10.1021/cr400443z. Epub 2014 Jan 28.
6
Nitrate and periplasmic nitrate reductases.
Chem Soc Rev. 2014 Jan 21;43(2):676-706. doi: 10.1039/c3cs60249d.
7
Impacts of nitrate and nitrite on physiology of Shewanella oneidensis.
PLoS One. 2013 Apr 23;8(4):e62629. doi: 10.1371/journal.pone.0062629. Print 2013.
9
Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control.
Antioxid Redox Signal. 2012 Apr 15;16(8):819-52. doi: 10.1089/ars.2011.4051. Epub 2012 Jan 25.
10
Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025).
J Bacteriol. 2011 Dec;193(23):6483-9. doi: 10.1128/JB.05324-11. Epub 2011 Sep 23.

本文引用的文献

2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
7
Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases.
J Bacteriol. 1999 Nov;181(21):6573-84. doi: 10.1128/JB.181.21.6573-6584.1999.
8
Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA.
FEMS Microbiol Lett. 1999 Aug 15;177(2):263-70. doi: 10.1111/j.1574-6968.1999.tb13742.x.
10
Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods.
Structure. 1999 Jan 15;7(1):65-79. doi: 10.1016/s0969-2126(99)80010-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验