周质硝酸盐还原酶 nap 是厌氧生长所必需的,并且参与 Magnetospirillum gryphiswaldense 中磁铁矿生物矿化的氧化还原控制。

The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense.

机构信息

Ludwig-Maximilians-Universität München, Department Biologie I, Mikrobiologie, Planegg-Martinsried, Germany.

出版信息

J Bacteriol. 2012 Sep;194(18):4847-56. doi: 10.1128/JB.00903-12. Epub 2012 Jun 22.

Abstract

The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for nitrate (nap), nitrite (nir), nitric oxide (nor), and nitrous oxide reduction (nos), was identified. Transcriptional gusA fusions as reporters revealed that except for nap, the highest expression of the denitrification genes coincided with conditions permitting maximum magnetite synthesis. Whereas microaerobic denitrification overlapped with oxygen respiration, nitrate was the only electron acceptor supporting growth in the entire absence of oxygen, and only the deletion of nap genes, encoding a periplasmic nitrate reductase, and not deletion of nor or nos genes, abolished anaerobic growth and also delayed aerobic growth in both nitrate and ammonium media. While loss of nosZ or norCB had no or relatively weak effects on magnetosome synthesis, deletion of nap severely impaired magnetite biomineralization and resulted in fewer, smaller, and irregular crystals during denitrification and also microaerobic respiration, probably by disturbing the proper redox balance required for magnetite synthesis. In contrast to the case for the wild type, biomineralization in Δnap cells was independent of the oxidation state of carbon substrates. Altogether, our data demonstrate that in addition to its essential role in anaerobic respiration, the periplasmic nitrate reductase Nap has a further key function by participating in redox reactions required for magnetite biomineralization.

摘要

许多趋磁细菌的磁小体由膜包裹的磁铁矿晶体组成,其合成有利于低氧化还原电位。然而,控制混合价氧化铁生物矿化的细胞氧化还原过程仍然未知。在这里,我们表明,在α变形菌 Magnetospirillum gryphiswaldense 中,磁铁矿生物矿化与异化硝酸盐还原有关。确定了完整的反硝化途径,包括硝酸盐(nap)、亚硝酸盐(nir)、一氧化氮(nor)和一氧化二氮还原(nos)的基因功能。作为报告者的转录 gusA 融合显示,除了 nap 之外,反硝化基因的最高表达与允许最大磁铁矿合成的条件一致。虽然微需氧反硝化与氧气呼吸重叠,但硝酸盐是在完全没有氧气的情况下唯一支持生长的电子受体,只有缺失编码周质硝酸盐还原酶的 nap 基因,而不是缺失 nor 或 nos 基因,才能消除厌氧生长,并在硝酸盐和铵盐培养基中也延迟有氧生长。虽然缺失 nosZ 或 norCB 对磁小体合成没有或相对较弱的影响,但缺失 nap 严重损害了磁铁矿的生物矿化,导致在反硝化和微需氧呼吸过程中形成的晶体更少、更小且不规则,可能是通过干扰合成磁铁矿所需的适当氧化还原平衡。与野生型相比,nap 缺失细胞的生物矿化不依赖于碳底物的氧化状态。总的来说,我们的数据表明,除了在厌氧呼吸中起重要作用外,周质硝酸盐还原酶 Nap 还通过参与磁铁矿生物矿化所需的氧化还原反应发挥进一步的关键作用。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索