Suppr超能文献

一种在拟南芥光合组织中高度表达的肽甲硫氨酸亚砜还原酶可以保护叶绿体定位的小热激蛋白的伴侣样活性。

A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein.

作者信息

Gustavsson Niklas, Kokke Bas P A, Härndahl Ulrika, Silow Maria, Bechtold Ulrike, Poghosyan Zaruhi, Murphy Denis, Boelens Wilbert C, Sundby Cecilia

机构信息

Department of Biochemistry, Lund University, Sweden.

出版信息

Plant J. 2002 Mar;29(5):545-53. doi: 10.1046/j.1365-313x.2002.029005545.x.

Abstract

The oxidation of methionine residues in proteins to methionine sulfoxides occurs frequently and protein repair by reduction of the methionine sulfoxides is mediated by an enzyme, peptide methionine sulfoxide reductase (PMSR, EC 1.8.4.6), universally present in the genomes of all so far sequenced organisms. Recently, five PMSR-like genes were identified in Arabidopsis thaliana, including one plastidic isoform, chloroplast localised plastidial peptide methionine sulfoxide reductase (pPMSR) that was chloroplast-localized and highly expressed in actively photosynthesizing tissue (Sadanandom A et al., 2000). However, no endogenous substrate to the pPMSR was identified. Here we report that a set of highly conserved methionine residues in Hsp21, a chloroplast-localized small heat shock protein, can become sulfoxidized and thereafter reduced back to methionines by this pPMSR. The pPMSR activity was evaluated using recombinantly expressed pPMSR and Hsp21 from Arabidopsis thaliana and a direct detection of methionine sulfoxides in Hsp21 by mass spectrometry. The pPMSR-catalyzed reduction of Hsp21 methionine sulfoxides occurred on a minute time-scale, was ultimately DTT-dependent and led to recovery of Hsp21 conformation and chaperone-like activity, both of which are lost upon methionine sulfoxidation (Härndahl et al., 2001). These data indicate that one important function of pPMSR may be to prevent inactivation of Hsp21 by methionine sulfoxidation, since small heat shock proteins are crucial for cellular resistance to oxidative stress.

摘要

蛋白质中的甲硫氨酸残基氧化为甲硫氨酸亚砜的现象频繁发生,而通过还原甲硫氨酸亚砜来修复蛋白质的过程由一种名为肽甲硫氨酸亚砜还原酶(PMSR,EC 1.8.4.6)的酶介导,该酶普遍存在于所有已测序生物的基因组中。最近,在拟南芥中鉴定出了五个类似PMSR的基因,其中包括一个质体异构体,即定位于叶绿体的质体肽甲硫氨酸亚砜还原酶(pPMSR),它定位于叶绿体且在活跃进行光合作用的组织中高度表达(萨达南多姆·A等人,2000年)。然而,尚未鉴定出pPMSR的内源性底物。在此我们报告,叶绿体定位的小分子热休克蛋白Hsp21中的一组高度保守的甲硫氨酸残基可被氧化为亚砜,随后可被这种pPMSR还原回甲硫氨酸。使用重组表达的来自拟南芥的pPMSR和Hsp21评估pPMSR活性,并通过质谱法直接检测Hsp21中的甲硫氨酸亚砜。pPMSR催化的Hsp21甲硫氨酸亚砜还原在分钟时间尺度上发生,最终依赖于二硫苏糖醇(DTT),并导致Hsp21构象和伴侣样活性的恢复,而这两种活性在甲硫氨酸被氧化后都会丧失(赫恩达尔等人,2001年)。这些数据表明,pPMSR的一个重要功能可能是防止Hsp21因甲硫氨酸氧化而失活,因为小分子热休克蛋白对于细胞抵抗氧化应激至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验