The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China.
Plant Mol Biol. 2019 Sep;101(1-2):203-220. doi: 10.1007/s11103-019-00901-2. Epub 2019 Jul 12.
Here, a functional characterization of a wheat MSR has been presented: this protein makes a contribution to the plant's tolerance of abiotic stress, acting through its catalytic capacity and its modulation of ROS and ABA pathways. The molecular mechanism and function of certain members of the methionine sulfoxide reductase (MSR) gene family have been defined, however, these analyses have not included the wheat equivalents. The wheat MSR gene TaMSRA4.1 is inducible by salinity and drought stress and in this study, we demonstrate that its activity is restricted to the Met-S-SO enantiomer, and its subcellular localization is in the chloroplast. Furthermore, constitutive expression of TaMSRA4.1 enhanced the salinity and drought tolerance of wheat and Arabidopsis thaliana. In these plants constitutively expressing TaMSRA4.1, the accumulation of reactive oxygen species (ROS) was found to be influenced through the modulation of genes encoding proteins involved in ROS signaling, generation and scavenging, while the level of endogenous abscisic acid (ABA), and the sensitivity of stomatal guard cells to exogenous ABA, was increased. A yeast two-hybrid screen, bimolecular fluorescence complementation and co-immunoprecipitation assays demonstrated that heme oxygenase 1 (HO1) interacted with TaMSRA4.1, and that this interaction depended on a TaHO1 C-terminal domain. In plants subjected to salinity or drought stress, TaMSRA4.1 reversed the oxidation of TaHO1, activating ROS and ABA signaling pathways, but not in the absence of HO1. The aforementioned properties advocate TaMSRA4.1 as a candidate for plant genetic enhancement.
本文对小麦 MSR 的功能进行了深入研究:该蛋白通过其催化能力及其对 ROS 和 ABA 途径的调节,为植物的非生物胁迫耐受性做出了贡献。然而,某些甲硫氨酸亚砜还原酶 (MSR) 基因家族成员的分子机制和功能已经得到了定义,但这些分析并未包括小麦等同物。小麦 MSR 基因 TaMSRA4.1 可被盐度和干旱胁迫诱导,在本研究中,我们证明其活性仅限于 Met-S-SO 对映体,其亚细胞定位在叶绿体中。此外,TaMSRA4.1 的组成型表达增强了小麦和拟南芥的耐盐性和耐旱性。在这些组成型表达 TaMSRA4.1 的植物中,通过调节编码与 ROS 信号、生成和清除相关的蛋白质的基因,发现活性氧(ROS)的积累受到影响,而内源性脱落酸(ABA)的水平和保卫细胞对外源 ABA 的敏感性增加。酵母双杂交筛选、双分子荧光互补和共免疫沉淀测定表明血红素加氧酶 1(HO1)与 TaMSRA4.1 相互作用,并且这种相互作用依赖于 TaHO1 的 C 末端结构域。在受到盐度或干旱胁迫的植物中,TaMSRA4.1 逆转了 TaHO1 的氧化,激活了 ROS 和 ABA 信号通路,但在没有 HO1 的情况下则不会。上述特性表明 TaMSRA4.1 是植物遗传增强的候选者。