Suppr超能文献

Equilibrium binding assays reveal the elevated stoichiometry and salt dependence of the interaction between full-length human sex-determining region on the Y chromosome (SRY) and DNA.

作者信息

Baud Stephanie, Margeat Emmanuel, Lumbroso Serge, Paris Françoise, Sultan Charles, Royer Catherine, Poujol Nicolas

机构信息

Centre de Biochimie Structurale, UMR INSERM 554, CNRS 5048, Université Montpellier I, 29 rue de Navacelles, 34090 Montpellier, France.

出版信息

J Biol Chem. 2002 May 24;277(21):18404-10. doi: 10.1074/jbc.M112366200. Epub 2002 Mar 4.

Abstract

In an effort to better define the molecular mechanism of the functional specificity of human sex-determining region on the Y chromosome (SRY), we have carried out equilibrium binding assays to study the interaction of the full-length bacterial-expressed protein with a DNA response element derived from the CD3epsilon gene enhancer. These assays are based on the observation of the fluorescence anisotropy of a fluorescein moiety covalently bound to the target oligonucleotide. The low anisotropy value due to the fast tumbling of the free oligonucleotide in solution increases substantially upon binding the protein to the labeled target DNA. Our results indicate that the full-length human wild-type SRY (SRY(WT)) forms a complex of high stoichiometry with its target DNA. Moreover, we have demonstrated a strong salt dependence of both the affinity and specificity of the interaction. We have also addressed the DNA bending properties of full-length human SRY(WT) in solution by fluorescence resonance energy transfer and revealed that maximal bending is achieved with a protein to DNA ratio significantly higher than the classical 1:1. Oligomerization thus appears, at least in vitro, to be tightly coupled to SRY-DNA interactions. Alteration of protein-protein interactions observed for the mutant protein SRY(Y129N), identified in a patient presenting with 46,XY sex reversal, suggests that oligomerization may play an important role in vivo as well.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验