Behlke Joachim, Ristau Otto
Max Delbrück Center for Molecular Medicine, D-13092, Berlin, Germany.
Biophys Chem. 2002 Jan 23;95(1):59-68. doi: 10.1016/s0301-4622(01)00248-4.
Sedimentation velocity is one of the best-suited physical methods for determining the size and shape of macromolecular substances or their complexes in the range from 1 to several thousand kDa. The moving boundary in sedimentation velocity runs can be described by the Lamm differential equation. Fitting of suitable model functions or solutions of the Lamm equation to the moving boundary is used to obtain directly sedimentation and diffusion coefficients, thus allowing quick determination of size, shape and other parameters of macromolecules. Here we present a new approximate whole boundary solution of the Lamm equation that simultaneously allows the specification of sedimentation and diffusion coefficients with deviations smaller than 1% from the expected values.
沉降速度是测定分子量在1至数千千道尔顿范围内的大分子物质或其复合物的大小和形状的最合适的物理方法之一。沉降速度实验中的移动边界可用拉姆微分方程来描述。将合适的模型函数或拉姆方程的解与移动边界进行拟合,可直接获得沉降系数和扩散系数,从而快速确定大分子的大小、形状及其他参数。在此,我们提出一种新的拉姆方程近似全边界解,它能同时确定沉降系数和扩散系数,其偏差比预期值小1%以内。