Suppr超能文献

通过沉降速度超速离心法和Lamm方程建模对大分子进行尺寸分布分析。

Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.

作者信息

Schuck P

机构信息

Molecular Interactions Resource, Bioengineering and Physical Science Program, ORS, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Biophys J. 2000 Mar;78(3):1606-19. doi: 10.1016/S0006-3495(00)76713-0.

Abstract

A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures.

摘要

本文描述了一种通过沉降速度分析超离心法进行聚合物尺寸分布分析的新方法。它利用了Lamm方程建模的能力,以区分由样品异质性和扩散引起的沉降边界扩展。将大量离散非相互作用物种的Lamm方程的有限元解与最大熵正则化相结合,以表示连续的尺寸分布。与程序CONTIN一样,通过方差分析将控制正则化约束的参数调整到预定义的置信水平。利用大分子的偏比容和摩擦比的估计值来计算扩散系数,从而得到相对高分辨率的沉降系数分布c(s)或摩尔质量分布c(M)。它可以应用于呈现系统噪声成分的干涉光学数据,并且不需要建立溶液或溶剂平台。与van Holde-Weischet分析相比,可以获得关于尺寸分布的更多细节。借助离散和连续模型尺寸分布的模拟沉降数据,以及通过应用于连续和离散蛋白质混合物的实验数据,探索了对正则化参数值和形状参数的敏感性。

相似文献

7
Sedimentation Velocity: A Classical Perspective.沉降速度:经典视角
Methods Enzymol. 2015;562:49-80. doi: 10.1016/bs.mie.2015.06.042. Epub 2015 Aug 13.
9
Determination of the sedimentation coefficient distribution by least-squares boundary modeling.通过最小二乘边界建模确定沉降系数分布
Biopolymers. 2000 Oct 15;54(5):328-41. doi: 10.1002/1097-0282(20001015)54:5<328::AID-BIP40>3.0.CO;2-P.

引用本文的文献

本文引用的文献

6
Pneumoparotitis: diagnosis by computed tomography.
Am J Otolaryngol. 1999 Jan-Feb;20(1):68-71. doi: 10.1016/s0196-0709(99)90055-8.
10
Determination of sedimentation coefficients for small peptides.小肽沉降系数的测定
Biophys J. 1998 Jan;74(1):466-74. doi: 10.1016/S0006-3495(98)77804-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验